Neuron Coverage-Guided Domain Generalization
- URL: http://arxiv.org/abs/2103.00229v1
- Date: Sat, 27 Feb 2021 14:26:53 GMT
- Title: Neuron Coverage-Guided Domain Generalization
- Authors: Chris Xing Tian, Haoliang Li, Xiaofei Xie, Yang Liu, Shiqi Wang
- Abstract summary: This paper focuses on the domain generalization task where domain knowledge is unavailable, and even worse, only samples from a single domain can be utilized during training.
Our motivation originates from the recent progresses in deep neural network (DNN) testing, which has shown that maximizing neuron coverage of DNN can help to explore possible defects of DNN.
- Score: 37.77033512313927
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: This paper focuses on the domain generalization task where domain knowledge
is unavailable, and even worse, only samples from a single domain can be
utilized during training. Our motivation originates from the recent progresses
in deep neural network (DNN) testing, which has shown that maximizing neuron
coverage of DNN can help to explore possible defects of DNN (i.e.,
misclassification). More specifically, by treating the DNN as a program and
each neuron as a functional point of the code, during the network training we
aim to improve the generalization capability by maximizing the neuron coverage
of DNN with the gradient similarity regularization between the original and
augmented samples. As such, the decision behavior of the DNN is optimized,
avoiding the arbitrary neurons that are deleterious for the unseen samples, and
leading to the trained DNN that can be better generalized to
out-of-distribution samples. Extensive studies on various domain generalization
tasks based on both single and multiple domain(s) setting demonstrate the
effectiveness of our proposed approach compared with state-of-the-art baseline
methods. We also analyze our method by conducting visualization based on
network dissection. The results further provide useful evidence on the
rationality and effectiveness of our approach.
Related papers
- Bayesian Neural Networks with Domain Knowledge Priors [52.80929437592308]
We propose a framework for integrating general forms of domain knowledge into a BNN prior.
We show that BNNs using our proposed domain knowledge priors outperform those with standard priors.
arXiv Detail & Related papers (2024-02-20T22:34:53Z) - Harnessing Neuron Stability to Improve DNN Verification [42.65507402735545]
We present VeriStable, a novel extension of recently proposed DPLL-based constraint DNN verification approach.
We evaluate the effectiveness of VeriStable across a range of challenging benchmarks including fully-connected feed networks (FNNs), convolutional neural networks (CNNs) and residual networks (ResNets)
Preliminary results show that VeriStable is competitive and outperforms state-of-the-art verification tools, including $alpha$-$beta$-CROWN and MN-BaB, the first and second performers of the VNN-COMP, respectively.
arXiv Detail & Related papers (2024-01-19T23:48:04Z) - SAfER: Layer-Level Sensitivity Assessment for Efficient and Robust
Neural Network Inference [20.564198591600647]
Deep neural networks (DNNs) demonstrate outstanding performance across most computer vision tasks.
Some critical applications, such as autonomous driving or medical imaging, also require investigation into their behavior.
DNN attribution consists in studying the relationship between the predictions of a DNN and its inputs.
arXiv Detail & Related papers (2023-08-09T07:45:51Z) - Transferability of coVariance Neural Networks and Application to
Interpretable Brain Age Prediction using Anatomical Features [119.45320143101381]
Graph convolutional networks (GCN) leverage topology-driven graph convolutional operations to combine information across the graph for inference tasks.
We have studied GCNs with covariance matrices as graphs in the form of coVariance neural networks (VNNs)
VNNs inherit the scale-free data processing architecture from GCNs and here, we show that VNNs exhibit transferability of performance over datasets whose covariance matrices converge to a limit object.
arXiv Detail & Related papers (2023-05-02T22:15:54Z) - Comparative Analysis of Interval Reachability for Robust Implicit and
Feedforward Neural Networks [64.23331120621118]
We use interval reachability analysis to obtain robustness guarantees for implicit neural networks (INNs)
INNs are a class of implicit learning models that use implicit equations as layers.
We show that our approach performs at least as well as, and generally better than, applying state-of-the-art interval bound propagation methods to INNs.
arXiv Detail & Related papers (2022-04-01T03:31:27Z) - Spiking Neural Networks for Visual Place Recognition via Weighted
Neuronal Assignments [24.754429120321365]
Spiking neural networks (SNNs) offer both compelling potential advantages, including energy efficiency and low latencies.
One promising area for high performance SNNs is template matching and image recognition.
This research introduces the first high performance SNN for the Visual Place Recognition (VPR) task.
arXiv Detail & Related papers (2021-09-14T05:40:40Z) - Optimizing Deep Neural Networks through Neuroevolution with Stochastic
Gradient Descent [18.70093247050813]
gradient descent (SGD) is dominant in training a deep neural network (DNN)
Neuroevolution is more in line with an evolutionary process and provides some key capabilities that are often unavailable in SGD.
A hierarchical cluster-based suppression algorithm is also developed to overcome similar weight updates among individuals for improving population diversity.
arXiv Detail & Related papers (2020-12-21T08:54:14Z) - Spiking Neural Networks -- Part II: Detecting Spatio-Temporal Patterns [38.518936229794214]
Spiking Neural Networks (SNNs) have the unique ability to detect information in encoded-temporal signals.
We review models and training algorithms for the dominant approach that considers SNNs as a Recurrent Neural Network (RNN)
We describe an alternative approach that relies on probabilistic models for spiking neurons, allowing the derivation of local learning rules via gradient estimates.
arXiv Detail & Related papers (2020-10-27T11:47:42Z) - Exploiting Heterogeneity in Operational Neural Networks by Synaptic
Plasticity [87.32169414230822]
Recently proposed network model, Operational Neural Networks (ONNs), can generalize the conventional Convolutional Neural Networks (CNNs)
In this study the focus is drawn on searching the best-possible operator set(s) for the hidden neurons of the network based on the Synaptic Plasticity paradigm that poses the essential learning theory in biological neurons.
Experimental results over highly challenging problems demonstrate that the elite ONNs even with few neurons and layers can achieve a superior learning performance than GIS-based ONNs.
arXiv Detail & Related papers (2020-08-21T19:03:23Z) - Modeling from Features: a Mean-field Framework for Over-parameterized
Deep Neural Networks [54.27962244835622]
This paper proposes a new mean-field framework for over- parameterized deep neural networks (DNNs)
In this framework, a DNN is represented by probability measures and functions over its features in the continuous limit.
We illustrate the framework via the standard DNN and the Residual Network (Res-Net) architectures.
arXiv Detail & Related papers (2020-07-03T01:37:16Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.