Uncertainty-Aware Unsupervised Domain Adaptation in Object Detection
- URL: http://arxiv.org/abs/2103.00236v1
- Date: Sat, 27 Feb 2021 15:04:07 GMT
- Title: Uncertainty-Aware Unsupervised Domain Adaptation in Object Detection
- Authors: Dayan Guan, Jiaxing Huang, Aoran Xiao, Shijian Lu, Yanpeng Cao
- Abstract summary: Unlabelled domain adaptive object detection aims to adapt detectors from a labelled source domain to an unsupervised target domain.
adversarial learning may impair the alignment of well-aligned samples as it merely aligns the global distributions across domains.
We design an uncertainty-aware domain adaptation network (UaDAN) that introduces conditional adversarial learning to align well-aligned and poorly-aligned samples separately.
- Score: 34.18382705952121
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Unsupervised domain adaptive object detection aims to adapt detectors from a
labelled source domain to an unlabelled target domain. Most existing works take
a two-stage strategy that first generates region proposals and then detects
objects of interest, where adversarial learning is widely adopted to mitigate
the inter-domain discrepancy in both stages. However, adversarial learning may
impair the alignment of well-aligned samples as it merely aligns the global
distributions across domains. To address this issue, we design an
uncertainty-aware domain adaptation network (UaDAN) that introduces conditional
adversarial learning to align well-aligned and poorly-aligned samples
separately in different manners. Specifically, we design an uncertainty metric
that assesses the alignment of each sample and adjusts the strength of
adversarial learning for well-aligned and poorly-aligned samples adaptively. In
addition, we exploit the uncertainty metric to achieve curriculum learning that
first performs easier image-level alignment and then more difficult
instance-level alignment progressively. Extensive experiments over four
challenging domain adaptive object detection datasets show that UaDAN achieves
superior performance as compared with state-of-the-art methods.
Related papers
- A Pairwise DomMix Attentive Adversarial Network for Unsupervised Domain Adaptive Object Detection [18.67853854539245]
Unsupervised Domain Adaptive Object Detection (DAOD) could adapt a model trained on a source domain to an unlabeled target domain for object detection.
We propose a pairwise attentive adversarial network with a Domain Mixup (DomMix) module to mitigate the aforementioned challenges.
arXiv Detail & Related papers (2024-07-03T06:25:20Z) - Improving Single Domain-Generalized Object Detection: A Focus on Diversification and Alignment [17.485775402656127]
A base detector can outperform existing methods for single domain generalization by a good margin.
We introduce a method to align detections from multiple views, considering both classification and localization outputs.
Our approach is detector-agnostic and can be seamlessly applied to both single-stage and two-stage detectors.
arXiv Detail & Related papers (2024-05-23T12:29:25Z) - DATR: Unsupervised Domain Adaptive Detection Transformer with Dataset-Level Adaptation and Prototypical Alignment [7.768332621617199]
We introduce a strong DETR-based detector named Domain Adaptive detection TRansformer ( DATR) for unsupervised domain adaptation of object detection.
Our proposed DATR incorporates a mean-teacher based self-training framework, utilizing pseudo-labels generated by the teacher model to further mitigate domain bias.
Experiments demonstrate superior performance and generalization capabilities of our proposed DATR in multiple domain adaptation scenarios.
arXiv Detail & Related papers (2024-05-20T03:48:45Z) - Bi-discriminator Domain Adversarial Neural Networks with Class-Level
Gradient Alignment [87.8301166955305]
We propose a novel bi-discriminator domain adversarial neural network with class-level gradient alignment.
BACG resorts to gradient signals and second-order probability estimation for better alignment of domain distributions.
In addition, inspired by contrastive learning, we develop a memory bank-based variant, i.e. Fast-BACG, which can greatly shorten the training process.
arXiv Detail & Related papers (2023-10-21T09:53:17Z) - Semi-supervised Domain Adaptive Structure Learning [72.01544419893628]
Semi-supervised domain adaptation (SSDA) is a challenging problem requiring methods to overcome both 1) overfitting towards poorly annotated data and 2) distribution shift across domains.
We introduce an adaptive structure learning method to regularize the cooperation of SSL and DA.
arXiv Detail & Related papers (2021-12-12T06:11:16Z) - Joint Distribution Alignment via Adversarial Learning for Domain
Adaptive Object Detection [11.262560426527818]
Unsupervised domain adaptive object detection aims to adapt a well-trained detector from its original source domain with rich labeled data to a new target domain with unlabeled data.
Recently, mainstream approaches perform this task through adversarial learning, yet still suffer from two limitations.
We propose a joint adaptive detection framework (JADF) to address the above challenges.
arXiv Detail & Related papers (2021-09-19T00:27:08Z) - Unsupervised Domain Adaptive 3D Detection with Multi-Level Consistency [90.71745178767203]
Deep learning-based 3D object detection has achieved unprecedented success with the advent of large-scale autonomous driving datasets.
Existing 3D domain adaptive detection methods often assume prior access to the target domain annotations, which is rarely feasible in the real world.
We study a more realistic setting, unsupervised 3D domain adaptive detection, which only utilizes source domain annotations.
arXiv Detail & Related papers (2021-07-23T17:19:23Z) - AFAN: Augmented Feature Alignment Network for Cross-Domain Object
Detection [90.18752912204778]
Unsupervised domain adaptation for object detection is a challenging problem with many real-world applications.
We propose a novel augmented feature alignment network (AFAN) which integrates intermediate domain image generation and domain-adversarial training.
Our approach significantly outperforms the state-of-the-art methods on standard benchmarks for both similar and dissimilar domain adaptations.
arXiv Detail & Related papers (2021-06-10T05:01:20Z) - Unsupervised Out-of-Domain Detection via Pre-trained Transformers [56.689635664358256]
Out-of-domain inputs can lead to unpredictable outputs and sometimes catastrophic safety issues.
Our work tackles the problem of detecting out-of-domain samples with only unsupervised in-domain data.
Two domain-specific fine-tuning approaches are further proposed to boost detection accuracy.
arXiv Detail & Related papers (2021-06-02T05:21:25Z) - Domain Adaptation for Semantic Segmentation via Patch-Wise Contrastive
Learning [62.7588467386166]
We leverage contrastive learning to bridge the domain gap by aligning the features of structurally similar label patches across domains.
Our approach consistently outperforms state-of-the-art unsupervised and semi-supervised methods on two challenging domain adaptive segmentation tasks.
arXiv Detail & Related papers (2021-04-22T13:39:12Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.