Improving Single Domain-Generalized Object Detection: A Focus on Diversification and Alignment
- URL: http://arxiv.org/abs/2405.14497v1
- Date: Thu, 23 May 2024 12:29:25 GMT
- Title: Improving Single Domain-Generalized Object Detection: A Focus on Diversification and Alignment
- Authors: Muhammad Sohail Danish, Muhammad Haris Khan, Muhammad Akhtar Munir, M. Saquib Sarfraz, Mohsen Ali,
- Abstract summary: A base detector can outperform existing methods for single domain generalization by a good margin.
We introduce a method to align detections from multiple views, considering both classification and localization outputs.
Our approach is detector-agnostic and can be seamlessly applied to both single-stage and two-stage detectors.
- Score: 17.485775402656127
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: In this work, we tackle the problem of domain generalization for object detection, specifically focusing on the scenario where only a single source domain is available. We propose an effective approach that involves two key steps: diversifying the source domain and aligning detections based on class prediction confidence and localization. Firstly, we demonstrate that by carefully selecting a set of augmentations, a base detector can outperform existing methods for single domain generalization by a good margin. This highlights the importance of domain diversification in improving the performance of object detectors. Secondly, we introduce a method to align detections from multiple views, considering both classification and localization outputs. This alignment procedure leads to better generalized and well-calibrated object detector models, which are crucial for accurate decision-making in safety-critical applications. Our approach is detector-agnostic and can be seamlessly applied to both single-stage and two-stage detectors. To validate the effectiveness of our proposed methods, we conduct extensive experiments and ablations on challenging domain-shift scenarios. The results consistently demonstrate the superiority of our approach compared to existing methods. Our code and models are available at: https://github.com/msohaildanish/DivAlign
Related papers
- Generalize or Detect? Towards Robust Semantic Segmentation Under Multiple Distribution Shifts [56.57141696245328]
In open-world scenarios, where both novel classes and domains may exist, an ideal segmentation model should detect anomaly classes for safety.
Existing methods often struggle to distinguish between domain-level and semantic-level distribution shifts.
arXiv Detail & Related papers (2024-11-06T11:03:02Z) - Cross-Domain Few-Shot Object Detection via Enhanced Open-Set Object Detector [72.05791402494727]
This paper studies the challenging cross-domain few-shot object detection (CD-FSOD)
It aims to develop an accurate object detector for novel domains with minimal labeled examples.
arXiv Detail & Related papers (2024-02-05T15:25:32Z) - Cross Domain Object Detection by Target-Perceived Dual Branch
Distillation [49.68119030818388]
Cross domain object detection is a realistic and challenging task in the wild.
We propose a novel Target-perceived Dual-branch Distillation (TDD) framework.
Our TDD significantly outperforms the state-of-the-art methods on all the benchmarks.
arXiv Detail & Related papers (2022-05-03T03:51:32Z) - Unsupervised Domain Adaptive 3D Detection with Multi-Level Consistency [90.71745178767203]
Deep learning-based 3D object detection has achieved unprecedented success with the advent of large-scale autonomous driving datasets.
Existing 3D domain adaptive detection methods often assume prior access to the target domain annotations, which is rarely feasible in the real world.
We study a more realistic setting, unsupervised 3D domain adaptive detection, which only utilizes source domain annotations.
arXiv Detail & Related papers (2021-07-23T17:19:23Z) - Domain Adaptive YOLO for One-Stage Cross-Domain Detection [4.596221278839825]
Domain Adaptive YOLO (DA-YOLO) is proposed to improve cross-domain performance for one-stage detectors.
We evaluate our proposed method on popular datasets like Cityscapes, KITTI, SIM10K and etc.
arXiv Detail & Related papers (2021-06-26T04:17:42Z) - Unsupervised Out-of-Domain Detection via Pre-trained Transformers [56.689635664358256]
Out-of-domain inputs can lead to unpredictable outputs and sometimes catastrophic safety issues.
Our work tackles the problem of detecting out-of-domain samples with only unsupervised in-domain data.
Two domain-specific fine-tuning approaches are further proposed to boost detection accuracy.
arXiv Detail & Related papers (2021-06-02T05:21:25Z) - Uncertainty-Aware Unsupervised Domain Adaptation in Object Detection [34.18382705952121]
Unlabelled domain adaptive object detection aims to adapt detectors from a labelled source domain to an unsupervised target domain.
adversarial learning may impair the alignment of well-aligned samples as it merely aligns the global distributions across domains.
We design an uncertainty-aware domain adaptation network (UaDAN) that introduces conditional adversarial learning to align well-aligned and poorly-aligned samples separately.
arXiv Detail & Related papers (2021-02-27T15:04:07Z) - Cross-domain Object Detection through Coarse-to-Fine Feature Adaptation [62.29076080124199]
This paper proposes a novel coarse-to-fine feature adaptation approach to cross-domain object detection.
At the coarse-grained stage, foreground regions are extracted by adopting the attention mechanism, and aligned according to their marginal distributions.
At the fine-grained stage, we conduct conditional distribution alignment of foregrounds by minimizing the distance of global prototypes with the same category but from different domains.
arXiv Detail & Related papers (2020-03-23T13:40:06Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.