A Minimax Probability Machine for Non-Decomposable Performance Measures
- URL: http://arxiv.org/abs/2103.00396v1
- Date: Sun, 28 Feb 2021 04:58:46 GMT
- Title: A Minimax Probability Machine for Non-Decomposable Performance Measures
- Authors: Junru Luo, Hong Qiao and Bo Zhang
- Abstract summary: Imbalanced classification tasks are widespread in many real-world applications.
The minimax probability machine is a popular method for binary classification problems.
This paper develops a new minimax probability machine for the $F_beta$ measure, called MPMF, which can be used to deal with imbalanced classification tasks.
- Score: 15.288802707471792
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Imbalanced classification tasks are widespread in many real-world
applications. For such classification tasks, in comparison with the accuracy
rate, it is usually much more appropriate to use non-decomposable performance
measures such as the Area Under the receiver operating characteristic Curve
(AUC) and the $F_\beta$ measure as the classification criterion since the label
class is imbalanced. On the other hand, the minimax probability machine is a
popular method for binary classification problems and aims at learning a linear
classifier by maximizing the accuracy rate, which makes it unsuitable to deal
with imbalanced classification tasks. The purpose of this paper is to develop a
new minimax probability machine for the $F_\beta$ measure, called MPMF, which
can be used to deal with imbalanced classification tasks. A brief discussion is
also given on how to extend the MPMF model for several other non-decomposable
performance measures listed in the paper. To solve the MPMF model effectively,
we derive its equivalent form which can then be solved by an alternating
descent method to learn a linear classifier. Further, the kernel trick is
employed to derive a nonlinear MPMF model to learn a nonlinear classifier.
Several experiments on real-world benchmark datasets demonstrate the
effectiveness of our new model.
Related papers
- Rethinking Classifier Re-Training in Long-Tailed Recognition: A Simple
Logits Retargeting Approach [102.0769560460338]
We develop a simple logits approach (LORT) without the requirement of prior knowledge of the number of samples per class.
Our method achieves state-of-the-art performance on various imbalanced datasets, including CIFAR100-LT, ImageNet-LT, and iNaturalist 2018.
arXiv Detail & Related papers (2024-03-01T03:27:08Z) - Smooth Ranking SVM via Cutting-Plane Method [6.946903076677842]
We develop a prototype learning approach that relies on cutting-plane method, similar to Ranking SVM, to maximize AUC.
Our algorithm learns simpler models by iteratively introducing cutting planes, thus overfitting is prevented in an unconventional way.
Based on the experiments conducted on 73 binary classification datasets, our method yields the best test AUC in 25 datasets among its relevant competitors.
arXiv Detail & Related papers (2024-01-25T18:47:23Z) - MISS: Multiclass Interpretable Scoring Systems [13.902264070785986]
We present a machine-learning approach for constructing Multiclass Interpretable Scoring Systems (MISS)
MISS is a fully data-driven methodology for single, sparse, and user-friendly scoring systems for multiclass classification problems.
Results indicate that our approach is competitive with other machine learning models in terms of classification performance metrics and provides well-calibrated class probabilities.
arXiv Detail & Related papers (2024-01-10T10:57:12Z) - Cost-sensitive probabilistic predictions for support vector machines [1.743685428161914]
Support vector machines (SVMs) are widely used and constitute one of the best examined and used machine learning models.
We propose a novel approach to generate probabilistic outputs for the SVM.
arXiv Detail & Related papers (2023-10-09T11:00:17Z) - Variational Classification [51.2541371924591]
We derive a variational objective to train the model, analogous to the evidence lower bound (ELBO) used to train variational auto-encoders.
Treating inputs to the softmax layer as samples of a latent variable, our abstracted perspective reveals a potential inconsistency.
We induce a chosen latent distribution, instead of the implicit assumption found in a standard softmax layer.
arXiv Detail & Related papers (2023-05-17T17:47:19Z) - Parametric Classification for Generalized Category Discovery: A Baseline
Study [70.73212959385387]
Generalized Category Discovery (GCD) aims to discover novel categories in unlabelled datasets using knowledge learned from labelled samples.
We investigate the failure of parametric classifiers, verify the effectiveness of previous design choices when high-quality supervision is available, and identify unreliable pseudo-labels as a key problem.
We propose a simple yet effective parametric classification method that benefits from entropy regularisation, achieves state-of-the-art performance on multiple GCD benchmarks and shows strong robustness to unknown class numbers.
arXiv Detail & Related papers (2022-11-21T18:47:11Z) - PLM: Partial Label Masking for Imbalanced Multi-label Classification [59.68444804243782]
Neural networks trained on real-world datasets with long-tailed label distributions are biased towards frequent classes and perform poorly on infrequent classes.
We propose a method, Partial Label Masking (PLM), which utilizes this ratio during training.
Our method achieves strong performance when compared to existing methods on both multi-label (MultiMNIST and MSCOCO) and single-label (imbalanced CIFAR-10 and CIFAR-100) image classification datasets.
arXiv Detail & Related papers (2021-05-22T18:07:56Z) - Risk Bounds for Over-parameterized Maximum Margin Classification on
Sub-Gaussian Mixtures [100.55816326422773]
We study the phenomenon of the maximum margin classifier for linear classification problems.
Our results precisely characterize the condition under which benign overfitting can occur.
arXiv Detail & Related papers (2021-04-28T08:25:16Z) - Scalable Marginal Likelihood Estimation for Model Selection in Deep
Learning [78.83598532168256]
Marginal-likelihood based model-selection is rarely used in deep learning due to estimation difficulties.
Our work shows that marginal likelihoods can improve generalization and be useful when validation data is unavailable.
arXiv Detail & Related papers (2021-04-11T09:50:24Z) - Unbiased Subdata Selection for Fair Classification: A Unified Framework
and Scalable Algorithms [0.8376091455761261]
We show that many classification models within this framework can be recast as mixed-integer convex programs.
We then show that in the proposed problem, when the classification outcomes, "unsolvable subdata selection," is strongly-solvable.
This motivates us to develop an iterative refining strategy (IRS) to solve the classification instances.
arXiv Detail & Related papers (2020-12-22T21:09:38Z) - Bayesian Few-Shot Classification with One-vs-Each P\'olya-Gamma
Augmented Gaussian Processes [7.6146285961466]
Few-shot classification (FSC) is an important step on the path toward human-like machine learning.
We propose a novel combination of P'olya-Gamma augmentation and the one-vs-each softmax approximation that allows us to efficiently marginalize over functions rather than model parameters.
We demonstrate improved accuracy and uncertainty quantification on both standard few-shot classification benchmarks and few-shot domain transfer tasks.
arXiv Detail & Related papers (2020-07-20T19:10:41Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.