MISS: Multiclass Interpretable Scoring Systems
- URL: http://arxiv.org/abs/2401.05069v1
- Date: Wed, 10 Jan 2024 10:57:12 GMT
- Title: MISS: Multiclass Interpretable Scoring Systems
- Authors: Michal K. Grzeszczyk, Tomasz Trzci\'nski, Arkadiusz Sitek
- Abstract summary: We present a machine-learning approach for constructing Multiclass Interpretable Scoring Systems (MISS)
MISS is a fully data-driven methodology for single, sparse, and user-friendly scoring systems for multiclass classification problems.
Results indicate that our approach is competitive with other machine learning models in terms of classification performance metrics and provides well-calibrated class probabilities.
- Score: 13.902264070785986
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: In this work, we present a novel, machine-learning approach for constructing
Multiclass Interpretable Scoring Systems (MISS) - a fully data-driven
methodology for generating single, sparse, and user-friendly scoring systems
for multiclass classification problems. Scoring systems are commonly utilized
as decision support models in healthcare, criminal justice, and other domains
where interpretability of predictions and ease of use are crucial. Prior
methods for data-driven scoring, such as SLIM (Supersparse Linear Integer
Model), were limited to binary classification tasks and extensions to
multiclass domains were primarily accomplished via one-versus-all-type
techniques. The scores produced by our method can be easily transformed into
class probabilities via the softmax function. We demonstrate techniques for
dimensionality reduction and heuristics that enhance the training efficiency
and decrease the optimality gap, a measure that can certify the optimality of
the model. Our approach has been extensively evaluated on datasets from various
domains, and the results indicate that it is competitive with other machine
learning models in terms of classification performance metrics and provides
well-calibrated class probabilities.
Related papers
- Ensemble Methods for Sequence Classification with Hidden Markov Models [8.241486511994202]
We present a lightweight approach to sequence classification using Ensemble Methods for Hidden Markov Models (HMMs)
HMMs offer significant advantages in scenarios with imbalanced or smaller datasets due to their simplicity, interpretability, and efficiency.
Our ensemble-based scoring method enables the comparison of sequences of any length and improves performance on imbalanced datasets.
arXiv Detail & Related papers (2024-09-11T20:59:32Z) - Probabilistic Multi-Dimensional Classification [5.147849907358484]
Multi-dimensional classification (MDC) can be employed in a range of applications where one needs to predict multiple class variables for each given instance.
Many existing MDC methods suffer from at least one of inaccuracy, scalability, limited use to certain types of data.
This paper is an attempt to address all these disadvantages simultaneously.
arXiv Detail & Related papers (2023-06-10T20:07:06Z) - Learning Optimal Fair Scoring Systems for Multi-Class Classification [0.0]
There are growing concerns about Machine Learning models with respect to their lack of interpretability and the undesirable biases they can generate or reproduce.
In this paper, we use Mixed-Integer Linear Programming (MILP) techniques to produce inherently interpretable scoring systems under sparsity and fairness constraints.
arXiv Detail & Related papers (2023-04-11T07:18:04Z) - MACE: An Efficient Model-Agnostic Framework for Counterfactual
Explanation [132.77005365032468]
We propose a novel framework of Model-Agnostic Counterfactual Explanation (MACE)
In our MACE approach, we propose a novel RL-based method for finding good counterfactual examples and a gradient-less descent method for improving proximity.
Experiments on public datasets validate the effectiveness with better validity, sparsity and proximity.
arXiv Detail & Related papers (2022-05-31T04:57:06Z) - Self-Supervised Class Incremental Learning [51.62542103481908]
Existing Class Incremental Learning (CIL) methods are based on a supervised classification framework sensitive to data labels.
When updating them based on the new class data, they suffer from catastrophic forgetting: the model cannot discern old class data clearly from the new.
In this paper, we explore the performance of Self-Supervised representation learning in Class Incremental Learning (SSCIL) for the first time.
arXiv Detail & Related papers (2021-11-18T06:58:19Z) - Binary Classification from Multiple Unlabeled Datasets via Surrogate Set
Classification [94.55805516167369]
We propose a new approach for binary classification from m U-sets for $mge2$.
Our key idea is to consider an auxiliary classification task called surrogate set classification (SSC)
arXiv Detail & Related papers (2021-02-01T07:36:38Z) - Few-Shot Named Entity Recognition: A Comprehensive Study [92.40991050806544]
We investigate three schemes to improve the model generalization ability for few-shot settings.
We perform empirical comparisons on 10 public NER datasets with various proportions of labeled data.
We create new state-of-the-art results on both few-shot and training-free settings.
arXiv Detail & Related papers (2020-12-29T23:43:16Z) - Theoretical Insights Into Multiclass Classification: A High-dimensional
Asymptotic View [82.80085730891126]
We provide the first modernally precise analysis of linear multiclass classification.
Our analysis reveals that the classification accuracy is highly distribution-dependent.
The insights gained may pave the way for a precise understanding of other classification algorithms.
arXiv Detail & Related papers (2020-11-16T05:17:29Z) - Neural Networks as Functional Classifiers [0.0]
We extend notable deep learning methodologies to the domain of functional data for the purpose of classification problems.
We highlight the effectiveness of our method in a number of classification applications such as classification of spectrographic data.
arXiv Detail & Related papers (2020-10-09T00:11:01Z) - Towards Model-Agnostic Post-Hoc Adjustment for Balancing Ranking
Fairness and Algorithm Utility [54.179859639868646]
Bipartite ranking aims to learn a scoring function that ranks positive individuals higher than negative ones from labeled data.
There have been rising concerns on whether the learned scoring function can cause systematic disparity across different protected groups.
We propose a model post-processing framework for balancing them in the bipartite ranking scenario.
arXiv Detail & Related papers (2020-06-15T10:08:39Z) - A novel embedded min-max approach for feature selection in nonlinear
support vector machine classification [0.0]
We propose an embedded feature selection method based on a min-max optimization problem.
By leveraging duality theory, we equivalently reformulate the min-max problem and solve it without further ado.
The efficiency and usefulness of our approach are tested on several benchmark data sets.
arXiv Detail & Related papers (2020-04-21T09:40:38Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.