Optimal Conversion of Conventional Artificial Neural Networks to Spiking
Neural Networks
- URL: http://arxiv.org/abs/2103.00476v1
- Date: Sun, 28 Feb 2021 12:04:22 GMT
- Title: Optimal Conversion of Conventional Artificial Neural Networks to Spiking
Neural Networks
- Authors: Shikuang Deng, Shi Gu
- Abstract summary: Spiking neural networks (SNNs) are biology-inspired artificial neural networks (ANNs)
We propose a novel strategic pipeline that transfers the weights to the target SNN by combining threshold balance and soft-reset mechanisms.
Our method is promising to get implanted onto embedded platforms with better support of SNNs with limited energy and memory.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Spiking neural networks (SNNs) are biology-inspired artificial neural
networks (ANNs) that comprise of spiking neurons to process asynchronous
discrete signals. While more efficient in power consumption and inference speed
on the neuromorphic hardware, SNNs are usually difficult to train directly from
scratch with spikes due to the discreteness. As an alternative, many efforts
have been devoted to converting conventional ANNs into SNNs by copying the
weights from ANNs and adjusting the spiking threshold potential of neurons in
SNNs. Researchers have designed new SNN architectures and conversion algorithms
to diminish the conversion error. However, an effective conversion should
address the difference between the SNN and ANN architectures with an efficient
approximation \DSK{of} the loss function, which is missing in the field. In
this work, we analyze the conversion error by recursive reduction to layer-wise
summation and propose a novel strategic pipeline that transfers the weights to
the target SNN by combining threshold balance and soft-reset mechanisms. This
pipeline enables almost no accuracy loss between the converted SNNs and
conventional ANNs with only $\sim1/10$ of the typical SNN simulation time. Our
method is promising to get implanted onto embedded platforms with better
support of SNNs with limited energy and memory.
Related papers
- Converting High-Performance and Low-Latency SNNs through Explicit Modelling of Residual Error in ANNs [27.46147049872907]
Spiking neural networks (SNNs) have garnered interest due to their energy efficiency and superior effectiveness on neuromorphic chips.
One of the mainstream approaches to implementing deep SNNs is the ANN-SNN conversion.
We propose a new approach based on explicit modeling of residual errors as additive noise.
arXiv Detail & Related papers (2024-04-26T14:50:46Z) - Optimal ANN-SNN Conversion with Group Neurons [39.14228133571838]
Spiking Neural Networks (SNNs) have emerged as a promising third generation of neural networks.
The lack of effective learning algorithms remains a challenge for SNNs.
We introduce a novel type of neuron called Group Neurons (GNs)
arXiv Detail & Related papers (2024-02-29T11:41:12Z) - One-Spike SNN: Single-Spike Phase Coding with Base Manipulation for ANN-to-SNN Conversion Loss Minimization [0.41436032949434404]
As spiking neural networks (SNNs) are event-driven, energy efficiency is higher than conventional artificial neural networks (ANNs)
In this work, we propose a single-spike phase coding as an encoding scheme that minimizes the number of spikes to transfer data between SNN layers.
Without any additional retraining or architectural constraints on ANNs, the proposed conversion method does not lose inference accuracy (0.58% on average) verified on three convolutional neural networks (CNNs) with CIFAR and ImageNet datasets.
arXiv Detail & Related papers (2024-01-30T02:00:28Z) - When Bio-Inspired Computing meets Deep Learning: Low-Latency, Accurate,
& Energy-Efficient Spiking Neural Networks from Artificial Neural Networks [22.721987637571306]
Spiking Neural Networks (SNNs) are demonstrating comparable accuracy to convolutional neural networks (CNN)
ANN-to-SNN conversion has recently gained significant traction in developing deep SNNs with close to state-of-the-art (SOTA) test accuracy on complex image recognition tasks.
We propose a novel ANN-to-SNN conversion framework, that incurs an exponentially lower number of time steps compared to that required in the SOTA conversion approaches.
arXiv Detail & Related papers (2023-12-12T00:10:45Z) - LC-TTFS: Towards Lossless Network Conversion for Spiking Neural Networks
with TTFS Coding [55.64533786293656]
We show that our algorithm can achieve a near-perfect mapping between the activation values of an ANN and the spike times of an SNN on a number of challenging AI tasks.
The study paves the way for deploying ultra-low-power TTFS-based SNNs on power-constrained edge computing platforms.
arXiv Detail & Related papers (2023-10-23T14:26:16Z) - A Hybrid Neural Coding Approach for Pattern Recognition with Spiking
Neural Networks [53.31941519245432]
Brain-inspired spiking neural networks (SNNs) have demonstrated promising capabilities in solving pattern recognition tasks.
These SNNs are grounded on homogeneous neurons that utilize a uniform neural coding for information representation.
In this study, we argue that SNN architectures should be holistically designed to incorporate heterogeneous coding schemes.
arXiv Detail & Related papers (2023-05-26T02:52:12Z) - Spiking Neural Network Decision Feedback Equalization [70.3497683558609]
We propose an SNN-based equalizer with a feedback structure akin to the decision feedback equalizer (DFE)
We show that our approach clearly outperforms conventional linear equalizers for three different exemplary channels.
The proposed SNN with a decision feedback structure enables the path to competitive energy-efficient transceivers.
arXiv Detail & Related papers (2022-11-09T09:19:15Z) - Training High-Performance Low-Latency Spiking Neural Networks by
Differentiation on Spike Representation [70.75043144299168]
Spiking Neural Network (SNN) is a promising energy-efficient AI model when implemented on neuromorphic hardware.
It is a challenge to efficiently train SNNs due to their non-differentiability.
We propose the Differentiation on Spike Representation (DSR) method, which could achieve high performance.
arXiv Detail & Related papers (2022-05-01T12:44:49Z) - Pruning of Deep Spiking Neural Networks through Gradient Rewiring [41.64961999525415]
Spiking Neural Networks (SNNs) have been attached great importance due to their biological plausibility and high energy-efficiency on neuromorphic chips.
Most existing methods directly apply pruning approaches in artificial neural networks (ANNs) to SNNs, which ignore the difference between ANNs and SNNs.
We propose gradient rewiring (Grad R), a joint learning algorithm of connectivity and weight for SNNs, that enables us to seamlessly optimize network structure without retrain.
arXiv Detail & Related papers (2021-05-11T10:05:53Z) - Progressive Tandem Learning for Pattern Recognition with Deep Spiking
Neural Networks [80.15411508088522]
Spiking neural networks (SNNs) have shown advantages over traditional artificial neural networks (ANNs) for low latency and high computational efficiency.
We propose a novel ANN-to-SNN conversion and layer-wise learning framework for rapid and efficient pattern recognition.
arXiv Detail & Related papers (2020-07-02T15:38:44Z) - You Only Spike Once: Improving Energy-Efficient Neuromorphic Inference
to ANN-Level Accuracy [51.861168222799186]
Spiking Neural Networks (SNNs) are a type of neuromorphic, or brain-inspired network.
SNNs are sparse, accessing very few weights, and typically only use addition operations instead of the more power-intensive multiply-and-accumulate operations.
In this work, we aim to overcome the limitations of TTFS-encoded neuromorphic systems.
arXiv Detail & Related papers (2020-06-03T15:55:53Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.