When Bio-Inspired Computing meets Deep Learning: Low-Latency, Accurate,
& Energy-Efficient Spiking Neural Networks from Artificial Neural Networks
- URL: http://arxiv.org/abs/2312.06900v1
- Date: Tue, 12 Dec 2023 00:10:45 GMT
- Title: When Bio-Inspired Computing meets Deep Learning: Low-Latency, Accurate,
& Energy-Efficient Spiking Neural Networks from Artificial Neural Networks
- Authors: Gourav Datta, Zeyu Liu, James Diffenderfer, Bhavya Kailkhura, and
Peter A. Beerel
- Abstract summary: Spiking Neural Networks (SNNs) are demonstrating comparable accuracy to convolutional neural networks (CNN)
ANN-to-SNN conversion has recently gained significant traction in developing deep SNNs with close to state-of-the-art (SOTA) test accuracy on complex image recognition tasks.
We propose a novel ANN-to-SNN conversion framework, that incurs an exponentially lower number of time steps compared to that required in the SOTA conversion approaches.
- Score: 22.721987637571306
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Bio-inspired Spiking Neural Networks (SNN) are now demonstrating comparable
accuracy to intricate convolutional neural networks (CNN), all while delivering
remarkable energy and latency efficiency when deployed on neuromorphic
hardware. In particular, ANN-to-SNN conversion has recently gained significant
traction in developing deep SNNs with close to state-of-the-art (SOTA) test
accuracy on complex image recognition tasks. However, advanced ANN-to-SNN
conversion approaches demonstrate that for lossless conversion, the number of
SNN time steps must equal the number of quantization steps in the ANN
activation function. Reducing the number of time steps significantly increases
the conversion error. Moreover, the spiking activity of the SNN, which
dominates the compute energy in neuromorphic chips, does not reduce
proportionally with the number of time steps. To mitigate the accuracy concern,
we propose a novel ANN-to-SNN conversion framework, that incurs an
exponentially lower number of time steps compared to that required in the SOTA
conversion approaches. Our framework modifies the SNN integrate-and-fire (IF)
neuron model with identical complexity and shifts the bias term of each batch
normalization (BN) layer in the trained ANN. To mitigate the spiking activity
concern, we propose training the source ANN with a fine-grained L1 regularizer
with surrogate gradients that encourages high spike sparsity in the converted
SNN. Our proposed framework thus yields lossless SNNs with ultra-low latency,
ultra-low compute energy, thanks to the ultra-low timesteps and high spike
sparsity, and ultra-high test accuracy, for example, 73.30% with only 4 time
steps on the ImageNet dataset.
Related papers
- Towards Low-latency Event-based Visual Recognition with Hybrid Step-wise Distillation Spiking Neural Networks [50.32980443749865]
Spiking neural networks (SNNs) have garnered significant attention for their low power consumption and high biologicalability.
Current SNNs struggle to balance accuracy and latency in neuromorphic datasets.
We propose Step-wise Distillation (HSD) method, tailored for neuromorphic datasets.
arXiv Detail & Related papers (2024-09-19T06:52:34Z) - Converting High-Performance and Low-Latency SNNs through Explicit Modelling of Residual Error in ANNs [27.46147049872907]
Spiking neural networks (SNNs) have garnered interest due to their energy efficiency and superior effectiveness on neuromorphic chips.
One of the mainstream approaches to implementing deep SNNs is the ANN-SNN conversion.
We propose a new approach based on explicit modeling of residual errors as additive noise.
arXiv Detail & Related papers (2024-04-26T14:50:46Z) - LC-TTFS: Towards Lossless Network Conversion for Spiking Neural Networks
with TTFS Coding [55.64533786293656]
We show that our algorithm can achieve a near-perfect mapping between the activation values of an ANN and the spike times of an SNN on a number of challenging AI tasks.
The study paves the way for deploying ultra-low-power TTFS-based SNNs on power-constrained edge computing platforms.
arXiv Detail & Related papers (2023-10-23T14:26:16Z) - Optimal ANN-SNN Conversion for High-accuracy and Ultra-low-latency
Spiking Neural Networks [22.532709609646066]
Spiking Neural Networks (SNNs) have gained great attraction due to their distinctive properties of low power consumption and fast inference on neuromorphic hardware.
As the most effective method to get deep SNNs, ANN-SNN conversion has achieved comparable performance as ANNs on large-scale datasets.
In this paper, we theoretically analyze ANN-SNN conversion error and derive the estimated activation function of SNNs.
We prove that the expected conversion error between SNNs and ANNs is zero, enabling us to achieve high-accuracy and ultra-low-latency SNN
arXiv Detail & Related papers (2023-03-08T03:04:53Z) - Ultra-low Latency Adaptive Local Binary Spiking Neural Network with
Accuracy Loss Estimator [4.554628904670269]
We propose an ultra-low latency adaptive local binary spiking neural network (ALBSNN) with accuracy loss estimators.
Experimental results show that this method can reduce storage space by more than 20 % without losing network accuracy.
arXiv Detail & Related papers (2022-07-31T09:03:57Z) - Training High-Performance Low-Latency Spiking Neural Networks by
Differentiation on Spike Representation [70.75043144299168]
Spiking Neural Network (SNN) is a promising energy-efficient AI model when implemented on neuromorphic hardware.
It is a challenge to efficiently train SNNs due to their non-differentiability.
We propose the Differentiation on Spike Representation (DSR) method, which could achieve high performance.
arXiv Detail & Related papers (2022-05-01T12:44:49Z) - Optimized Potential Initialization for Low-latency Spiking Neural
Networks [21.688402090967497]
Spiking Neural Networks (SNNs) have been attached great importance due to the distinctive properties of low power consumption, biological plausibility, and adversarial robustness.
The most effective way to train deep SNNs is through ANN-to-SNN conversion, which have yielded the best performance in deep network structure and large-scale datasets.
In this paper, we aim to achieve high-performance converted SNNs with extremely low latency (fewer than 32 time-steps)
arXiv Detail & Related papers (2022-02-03T07:15:43Z) - Hybrid SNN-ANN: Energy-Efficient Classification and Object Detection for
Event-Based Vision [64.71260357476602]
Event-based vision sensors encode local pixel-wise brightness changes in streams of events rather than image frames.
Recent progress in object recognition from event-based sensors has come from conversions of deep neural networks.
We propose a hybrid architecture for end-to-end training of deep neural networks for event-based pattern recognition and object detection.
arXiv Detail & Related papers (2021-12-06T23:45:58Z) - Optimal Conversion of Conventional Artificial Neural Networks to Spiking
Neural Networks [0.0]
Spiking neural networks (SNNs) are biology-inspired artificial neural networks (ANNs)
We propose a novel strategic pipeline that transfers the weights to the target SNN by combining threshold balance and soft-reset mechanisms.
Our method is promising to get implanted onto embedded platforms with better support of SNNs with limited energy and memory.
arXiv Detail & Related papers (2021-02-28T12:04:22Z) - Progressive Tandem Learning for Pattern Recognition with Deep Spiking
Neural Networks [80.15411508088522]
Spiking neural networks (SNNs) have shown advantages over traditional artificial neural networks (ANNs) for low latency and high computational efficiency.
We propose a novel ANN-to-SNN conversion and layer-wise learning framework for rapid and efficient pattern recognition.
arXiv Detail & Related papers (2020-07-02T15:38:44Z) - You Only Spike Once: Improving Energy-Efficient Neuromorphic Inference
to ANN-Level Accuracy [51.861168222799186]
Spiking Neural Networks (SNNs) are a type of neuromorphic, or brain-inspired network.
SNNs are sparse, accessing very few weights, and typically only use addition operations instead of the more power-intensive multiply-and-accumulate operations.
In this work, we aim to overcome the limitations of TTFS-encoded neuromorphic systems.
arXiv Detail & Related papers (2020-06-03T15:55:53Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.