論文の概要: A Proof of Concept Neural Network Watchdog using a Hybrid Generative
Classifier For Optimized Outlier Detection
- arxiv url: http://arxiv.org/abs/2103.00582v1
- Date: Sun, 28 Feb 2021 18:20:48 GMT
- ステータス: 処理完了
- システム内更新日: 2021-03-04 16:04:01.004188
- Title: A Proof of Concept Neural Network Watchdog using a Hybrid Generative
Classifier For Optimized Outlier Detection
- Title(参考訳): 最適外乱検出のためのハイブリッド生成型分類器を用いた概念ニューラルネットワークウォッチドッグの証明
- Authors: Justin Bui and Robert J. Marks II
- Abstract要約: 果物を分類するために訓練されたニューラルネットワークは、バナナの写真をバナナとして分類することができる。
ニューラルネットワークウォッチドッグは、そのような分散入力を識別するために実装される。
ハイブリッドジェネレータ/分類ネットワークを構築することで,トレーニングや評価効率の向上を図りながら,監視犬の実装が容易になる。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by-sa/4.0/
- Abstract: With the continuous development of tools such as TensorFlow and PyTorch,
Neural Networks are becoming easier to develop and train. With the expansion of
these tools, however, neural networks have also become more black boxed. A
neural network trained to classify fruit may classify a picture of a giraffe as
a banana. A neural network watchdog may be implemented to identify such
out-of-distribution inputs, allowing a classifier to disregard such data. By
building a hybrid generator/classifier network, we can easily implement a
watchdog while improving training and evaluation efficiency.
- Abstract(参考訳): TensorFlowやPyTorchなどのツールの継続的な開発により、ニューラルネットワークは開発とトレーニングが容易になっています。
しかし、これらのツールの拡大に伴い、ニューラルネットワークはよりブラックボックス化されている。
果物を分類するために訓練されたニューラルネットワークは、キリンの絵をバナナとして分類することができる。
ニューラルネットワークのwatchdogは、そのような分布外の入力を識別するために実装され、分類器はそのようなデータを無視することができる。
ハイブリッドジェネレータ/分類ネットワークを構築することで,トレーニングや評価効率の向上を図りながら,監視犬の実装が容易になる。
関連論文リスト
- Residual Random Neural Networks [0.0]
ランダムな重みを持つ単層フィードフォワードニューラルネットワークは、ニューラルネットワークの文献の中で繰り返されるモチーフである。
隠れたニューロンの数がデータサンプルの次元と等しくない場合でも,優れた分類結果が得られることを示す。
論文 参考訳(メタデータ) (2024-10-25T22:00:11Z) - An experimental comparative study of backpropagation and alternatives for training binary neural networks for image classification [1.0749601922718608]
バイナリニューラルネットワークは、ディープニューラルネットワークモデルのサイズを減らすことを約束する。
より強力なモデルをエッジデバイスにデプロイすることも可能だ。
しかしながら、バイナリニューラルネットワークは、バックプロパゲーションに基づく勾配降下法を用いて訓練することが依然として難しいことが証明されている。
論文 参考訳(メタデータ) (2024-08-08T13:39:09Z) - Taming Binarized Neural Networks and Mixed-Integer Programs [2.7624021966289596]
バイナライズされたニューラルネットワークはテーム表現を許容することを示す。
これにより、Bolte et al. のフレームワークを暗黙の微分に使用できる。
このアプローチは、より広範な混合整数プログラムのクラスにも使用することができる。
論文 参考訳(メタデータ) (2023-10-05T21:04:16Z) - You Can Have Better Graph Neural Networks by Not Training Weights at
All: Finding Untrained GNNs Tickets [105.24703398193843]
グラフニューラルネットワーク(GNN)の未訓練作業はまだ謎のままだ。
得られた未学習作品によって,GNNの過度なスムース化問題を大幅に軽減できることを示す。
また,そのような未学習作業が,入力摂動の分布外検出と堅牢性に優れていることも観察した。
論文 参考訳(メタデータ) (2022-11-28T14:17:36Z) - Neural networks trained with SGD learn distributions of increasing
complexity [78.30235086565388]
勾配降下法を用いてトレーニングされたニューラルネットワークは、まず低次入力統計を用いて入力を分類する。
その後、トレーニング中にのみ高次の統計を利用する。
本稿では,DSBと他の単純度バイアスとの関係について論じ,学習における普遍性の原理にその意味を考察する。
論文 参考訳(メタデータ) (2022-11-21T15:27:22Z) - Neural Capacitance: A New Perspective of Neural Network Selection via
Edge Dynamics [85.31710759801705]
現在の実践は、性能予測のためのモデルトレーニングにおいて高価な計算コストを必要とする。
本稿では,学習中のシナプス接続(エッジ)上の制御ダイナミクスを解析し,ニューラルネットワーク選択のための新しいフレームワークを提案する。
我々のフレームワークは、ニューラルネットワークトレーニング中のバックプロパゲーションがシナプス接続の動的進化と等価であるという事実に基づいて構築されている。
論文 参考訳(メタデータ) (2022-01-11T20:53:15Z) - Why Lottery Ticket Wins? A Theoretical Perspective of Sample Complexity
on Pruned Neural Networks [79.74580058178594]
目的関数の幾何学的構造を解析することにより、刈り取られたニューラルネットワークを訓練する性能を解析する。
本稿では,ニューラルネットワークモデルがプルーニングされるにつれて,一般化が保証された望ましいモデル近傍の凸領域が大きくなることを示す。
論文 参考訳(メタデータ) (2021-10-12T01:11:07Z) - Predify: Augmenting deep neural networks with brain-inspired predictive
coding dynamics [0.5284812806199193]
我々は神経科学の一般的な枠組みからインスピレーションを得た:「予測コーディング」
本稿では、この戦略をVGG16とEfficientNetB0という2つの人気ネットワークに実装することで、様々な汚職に対する堅牢性を向上させることを示す。
論文 参考訳(メタデータ) (2021-06-04T22:48:13Z) - Leveraging Sparse Linear Layers for Debuggable Deep Networks [86.94586860037049]
学習した深い特徴表現に疎い線形モデルを適用することで、よりデバッグ可能なニューラルネットワークを実現する方法を示す。
その結果、スパースな説明は、スプリアス相関を特定し、誤分類を説明し、視覚および言語タスクにおけるモデルバイアスを診断するのに役立ちます。
論文 参考訳(メタデータ) (2021-05-11T08:15:25Z) - Fast Adaptation with Linearized Neural Networks [35.43406281230279]
ニューラルネットワークの線形化の帰納的バイアスについて検討し,全ネットワーク関数の驚くほどよい要約であることを示した。
この発見に触発されて,これらの帰納的バイアスをネットワークのヤコビアンから設計されたカーネルを通してガウス過程に埋め込む手法を提案する。
この設定では、領域適応は不確実性推定を伴う解釈可能な後方推論の形式を取る。
論文 参考訳(メタデータ) (2021-03-02T03:23:03Z) - Towards Understanding Hierarchical Learning: Benefits of Neural
Representations [160.33479656108926]
この研究で、中間的神経表現がニューラルネットワークにさらなる柔軟性をもたらすことを実証する。
提案手法は, 生の入力と比較して, サンプルの複雑度を向上できることを示す。
この結果から, 深度が深層学習においてなぜ重要かという新たな視点が得られた。
論文 参考訳(メタデータ) (2020-06-24T02:44:54Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。