Self-Supervised Multi-View Learning via Auto-Encoding 3D Transformations
- URL: http://arxiv.org/abs/2103.00787v1
- Date: Mon, 1 Mar 2021 06:24:17 GMT
- Title: Self-Supervised Multi-View Learning via Auto-Encoding 3D Transformations
- Authors: Xiang Gao, Wei Hu, Guo-Jun Qi
- Abstract summary: We propose a novel self-supervised paradigm to learn Multi-View Transformation Equivariant Representations (MV-TER)
Specifically, we perform a 3D transformation on a 3D object, and obtain multiple views before and after the transformation via projection.
Then, we self-train a representation to capture the intrinsic 3D object representation by decoding 3D transformation parameters from the fused feature representations of multiple views before and after the transformation.
- Score: 61.870882736758624
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: 3D object representation learning is a fundamental challenge in computer
vision to infer about the 3D world. Recent advances in deep learning have shown
their efficiency in 3D object recognition, among which view-based methods have
performed best so far. However, feature learning of multiple views in existing
methods is mostly performed in a supervised fashion, which often requires a
large amount of data labels with high costs. In contrast, self-supervised
learning aims to learn multi-view feature representations without involving
labeled data. To this end, we propose a novel self-supervised paradigm to learn
Multi-View Transformation Equivariant Representations (MV-TER), exploring the
equivariant transformations of a 3D object and its projected multiple views.
Specifically, we perform a 3D transformation on a 3D object, and obtain
multiple views before and after the transformation via projection. Then, we
self-train a representation to capture the intrinsic 3D object representation
by decoding 3D transformation parameters from the fused feature representations
of multiple views before and after the transformation. Experimental results
demonstrate that the proposed MV-TER significantly outperforms the
state-of-the-art view-based approaches in 3D object classification and
retrieval tasks, and show the generalization to real-world datasets.
Related papers
- Deep Models for Multi-View 3D Object Recognition: A Review [16.500711021549947]
Multi-view 3D representations for object recognition has thus far demonstrated the most promising results for achieving state-of-the-art performance.
This review paper comprehensively covers recent progress in multi-view 3D object recognition methods for 3D classification and retrieval tasks.
arXiv Detail & Related papers (2024-04-23T16:54:31Z) - AutoDecoding Latent 3D Diffusion Models [95.7279510847827]
We present a novel approach to the generation of static and articulated 3D assets that has a 3D autodecoder at its core.
The 3D autodecoder framework embeds properties learned from the target dataset in the latent space.
We then identify the appropriate intermediate volumetric latent space, and introduce robust normalization and de-normalization operations.
arXiv Detail & Related papers (2023-07-07T17:59:14Z) - Viewpoint Equivariance for Multi-View 3D Object Detection [35.4090127133834]
State-of-the-art methods focus on reasoning and decoding object bounding boxes from multi-view camera input.
We introduce VEDet, a novel 3D object detection framework that exploits 3D multi-view geometry.
arXiv Detail & Related papers (2023-03-25T19:56:41Z) - Multiview Compressive Coding for 3D Reconstruction [77.95706553743626]
We introduce a simple framework that operates on 3D points of single objects or whole scenes.
Our model, Multiview Compressive Coding, learns to compress the input appearance and geometry to predict the 3D structure.
arXiv Detail & Related papers (2023-01-19T18:59:52Z) - MVTN: Learning Multi-View Transformations for 3D Understanding [60.15214023270087]
We introduce the Multi-View Transformation Network (MVTN), which uses differentiable rendering to determine optimal view-points for 3D shape recognition.
MVTN can be trained end-to-end with any multi-view network for 3D shape recognition.
Our approach demonstrates state-of-the-art performance in 3D classification and shape retrieval on several benchmarks.
arXiv Detail & Related papers (2022-12-27T12:09:16Z) - 3D Vision with Transformers: A Survey [114.86385193388439]
The success of the transformer architecture in natural language processing has triggered attention in the computer vision field.
We present a systematic and thorough review of more than 100 transformers methods for different 3D vision tasks.
We discuss transformer design in 3D vision, which allows it to process data with various 3D representations.
arXiv Detail & Related papers (2022-08-08T17:59:11Z) - Object Scene Representation Transformer [56.40544849442227]
We introduce Object Scene Representation Transformer (OSRT), a 3D-centric model in which individual object representations naturally emerge through novel view synthesis.
OSRT scales to significantly more complex scenes with larger diversity of objects and backgrounds than existing methods.
It is multiple orders of magnitude faster at compositional rendering thanks to its light field parametrization and the novel Slot Mixer decoder.
arXiv Detail & Related papers (2022-06-14T15:40:47Z) - Info3D: Representation Learning on 3D Objects using Mutual Information
Maximization and Contrastive Learning [8.448611728105513]
We propose to extend the InfoMax and contrastive learning principles on 3D shapes.
We show that we can maximize the mutual information between 3D objects and their "chunks" to improve the representations in aligned datasets.
arXiv Detail & Related papers (2020-06-04T00:30:26Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.