Object Scene Representation Transformer
- URL: http://arxiv.org/abs/2206.06922v1
- Date: Tue, 14 Jun 2022 15:40:47 GMT
- Title: Object Scene Representation Transformer
- Authors: Mehdi S. M. Sajjadi, Daniel Duckworth, Aravindh Mahendran, Sjoerd van
Steenkiste, Filip Paveti\'c, Mario Lu\v{c}i\'c, Leonidas J. Guibas, Klaus
Greff, Thomas Kipf
- Abstract summary: We introduce Object Scene Representation Transformer (OSRT), a 3D-centric model in which individual object representations naturally emerge through novel view synthesis.
OSRT scales to significantly more complex scenes with larger diversity of objects and backgrounds than existing methods.
It is multiple orders of magnitude faster at compositional rendering thanks to its light field parametrization and the novel Slot Mixer decoder.
- Score: 56.40544849442227
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: A compositional understanding of the world in terms of objects and their
geometry in 3D space is considered a cornerstone of human cognition.
Facilitating the learning of such a representation in neural networks holds
promise for substantially improving labeled data efficiency. As a key step in
this direction, we make progress on the problem of learning 3D-consistent
decompositions of complex scenes into individual objects in an unsupervised
fashion. We introduce Object Scene Representation Transformer (OSRT), a
3D-centric model in which individual object representations naturally emerge
through novel view synthesis. OSRT scales to significantly more complex scenes
with larger diversity of objects and backgrounds than existing methods. At the
same time, it is multiple orders of magnitude faster at compositional rendering
thanks to its light field parametrization and the novel Slot Mixer decoder. We
believe this work will not only accelerate future architecture exploration and
scaling efforts, but it will also serve as a useful tool for both
object-centric as well as neural scene representation learning communities.
Related papers
- Dynamic Scene Understanding through Object-Centric Voxelization and Neural Rendering [57.895846642868904]
We present a 3D generative model named DynaVol-S for dynamic scenes that enables object-centric learning.
voxelization infers per-object occupancy probabilities at individual spatial locations.
Our approach integrates 2D semantic features to create 3D semantic grids, representing the scene through multiple disentangled voxel grids.
arXiv Detail & Related papers (2024-07-30T15:33:58Z) - Enhancing Generalizability of Representation Learning for Data-Efficient 3D Scene Understanding [50.448520056844885]
We propose a generative Bayesian network to produce diverse synthetic scenes with real-world patterns.
A series of experiments robustly display our method's consistent superiority over existing state-of-the-art pre-training approaches.
arXiv Detail & Related papers (2024-06-17T07:43:53Z) - SUGAR: Pre-training 3D Visual Representations for Robotics [85.55534363501131]
We introduce a novel 3D pre-training framework for robotics named SUGAR.
SUGAR captures semantic, geometric and affordance properties of objects through 3D point clouds.
We show that SUGAR's 3D representation outperforms state-of-the-art 2D and 3D representations.
arXiv Detail & Related papers (2024-04-01T21:23:03Z) - Variational Inference for Scalable 3D Object-centric Learning [19.445804699433353]
We tackle the task of scalable unsupervised object-centric representation learning on 3D scenes.
Existing approaches to object-centric representation learning show limitations in generalizing to larger scenes.
We propose to learn view-invariant 3D object representations in localized object coordinate systems.
arXiv Detail & Related papers (2023-09-25T10:23:40Z) - Self-Supervised Multi-View Learning via Auto-Encoding 3D Transformations [61.870882736758624]
We propose a novel self-supervised paradigm to learn Multi-View Transformation Equivariant Representations (MV-TER)
Specifically, we perform a 3D transformation on a 3D object, and obtain multiple views before and after the transformation via projection.
Then, we self-train a representation to capture the intrinsic 3D object representation by decoding 3D transformation parameters from the fused feature representations of multiple views before and after the transformation.
arXiv Detail & Related papers (2021-03-01T06:24:17Z) - Learning to Reconstruct and Segment 3D Objects [4.709764624933227]
We aim to understand scenes and the objects within them by learning general and robust representations using deep neural networks.
This thesis makes three core contributions from object-level 3D shape estimation from single or multiple views to scene-level semantic understanding.
arXiv Detail & Related papers (2020-10-19T15:09:04Z) - Weakly Supervised Learning of Multi-Object 3D Scene Decompositions Using
Deep Shape Priors [69.02332607843569]
PriSMONet is a novel approach for learning Multi-Object 3D scene decomposition and representations from single images.
A recurrent encoder regresses a latent representation of 3D shape, pose and texture of each object from an input RGB image.
We evaluate the accuracy of our model in inferring 3D scene layout, demonstrate its generative capabilities, assess its generalization to real images, and point out benefits of the learned representation.
arXiv Detail & Related papers (2020-10-08T14:49:23Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.