論文の概要: Deep learning based geometric registration for medical images: How
accurate can we get without visual features?
- arxiv url: http://arxiv.org/abs/2103.00885v1
- Date: Mon, 1 Mar 2021 10:15:47 GMT
- ステータス: 処理完了
- システム内更新日: 2021-03-04 22:35:52.973946
- Title: Deep learning based geometric registration for medical images: How
accurate can we get without visual features?
- Title(参考訳): 深層学習に基づく医用画像の幾何学的登録:視覚的特徴のない精度はどの程度か?
- Authors: Lasse Hansen and Mattias P. Heinrich
- Abstract要約: ディープラーニングは、画像登録のための新しいアプローチの開発を推進している。
本稿では,幾何学的特徴と最適化のみに基づく登録のための深層学習フレームワークを検討することで,正反対のアプローチを検討する。
実験では, 肺内構造の複雑なキーポイントグラフを用いて, 高密度エンコーダ・デコーダネットワークや他のポイントセット登録法を強力に上回って検証を行った。
- 参考スコア(独自算出の注目度): 5.05806585671215
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: As in other areas of medical image analysis, e.g. semantic segmentation, deep
learning is currently driving the development of new approaches for image
registration. Multi-scale encoder-decoder network architectures achieve
state-of-the-art accuracy on tasks such as intra-patient alignment of abdominal
CT or brain MRI registration, especially when additional supervision, such as
anatomical labels, is available. The success of these methods relies to a large
extent on the outstanding ability of deep CNNs to extract descriptive visual
features from the input images. In contrast to conventional methods, the
explicit inclusion of geometric information plays only a minor role, if at all.
In this work we take a look at an exactly opposite approach by investigating a
deep learning framework for registration based solely on geometric features and
optimisation. We combine graph convolutions with loopy belief message passing
to enable highly accurate 3D point cloud registration. Our experimental
validation is conducted on complex key-point graphs of inner lung structures,
strongly outperforming dense encoder-decoder networks and other point set
registration methods. Our code is publicly available at
https://github.com/multimodallearning/deep-geo-reg.
- Abstract(参考訳): 医療画像解析の他の分野と同様に、例えば。
セマンティックセグメンテーション ディープラーニングは現在、画像登録のための新しいアプローチの開発を推進しています。
マルチスケールエンコーダデコーダネットワークアーキテクチャは、腹部CTの患者内アライメントや脳MRIの登録など、特に解剖学的ラベルなどの追加の監督が利用可能なタスクの最新の精度を実現します。
これらの手法の成功は、入力画像から記述的な視覚特徴を抽出するディープcnnの優れた能力に大きく依存している。
従来の方法とは対照的に、幾何学的情報の明示的な包含はわずかな役割しか果たさない。
本稿では,幾何学的特徴と最適化のみに基づく登録のための深層学習フレームワークを検討することで,正反対のアプローチを検討する。
グラフ畳み込みとループなメッセージパッシングを組み合わせることで,高精度な3Dポイントクラウド登録を実現する。
実験では, 肺内構造の複雑なキーポイントグラフを用いて, 高密度エンコーダ・デコーダネットワークや他のポイントセット登録法を強力に上回って検証を行った。
私たちのコードはhttps://github.com/multimodallearning/deep-geo-regで公開しています。
関連論文リスト
- Deep Homography Estimation for Visual Place Recognition [49.235432979736395]
本稿では,変換器を用いたディープホモグラフィー推定(DHE)ネットワークを提案する。
バックボーンネットワークによって抽出された濃密な特徴写像を入力とし、高速で学習可能な幾何的検証のためにホモグラフィーに適合する。
ベンチマークデータセットを用いた実験により,本手法はいくつかの最先端手法より優れていることが示された。
論文 参考訳(メタデータ) (2024-02-25T13:22:17Z) - Learning Multimodal Volumetric Features for Large-Scale Neuron Tracing [72.45257414889478]
オーバーセグメントニューロン間の接続を予測し,人間の作業量を削減することを目的としている。
最初はFlyTracingという名前のデータセットを構築しました。
本稿では,高密度なボリュームEM画像の埋め込みを生成するための,新しい接続性を考慮したコントラスト学習手法を提案する。
論文 参考訳(メタデータ) (2024-01-05T19:45:12Z) - Anatomy-aware and acquisition-agnostic joint registration with SynthMorph [6.017634371712142]
アフィン画像登録は、医用画像解析の基盤となっている。
ディープラーニング(DL)メソッドは、画像対を出力変換にマッピングする関数を学ぶ。
ほとんどのアフィン法は、ユーザが調整したい解剖学に依存しない。つまり、アルゴリズムが画像のすべての構造を考慮すれば、登録は不正確なものになる。
われわれはこれらの欠点をSynthMorphで解決する。これは高速で対称で、微分型で使い易いDLツールで、任意の脳画像の関節アフィン変形性登録を行う。
論文 参考訳(メタデータ) (2023-01-26T18:59:33Z) - Prediction of Geometric Transformation on Cardiac MRI via Convolutional
Neural Network [13.01021780124613]
画像に適用される幾何学的変換を認識するために,ConvNetsを訓練して医用画像の特徴を学習することを提案する。
幾何学的変換を容易に予測できる簡単な自己教師型タスクを提案する。
論文 参考訳(メタデータ) (2022-11-12T11:29:14Z) - Attentive Symmetric Autoencoder for Brain MRI Segmentation [56.02577247523737]
視覚変換器(ViT)をベースとした3次元脳MRIセグメンテーションタスクのための新しいアテンテーティブシンメトリオートエンコーダを提案する。
事前学習の段階では、提案するオートエンコーダがより注意を払って、勾配測定値に従って情報パッチを再構築する。
実験の結果,提案手法は最先端の自己教師付き学習法や医用画像分割モデルよりも優れていた。
論文 参考訳(メタデータ) (2022-09-19T09:43:19Z) - PointMCD: Boosting Deep Point Cloud Encoders via Multi-view Cross-modal
Distillation for 3D Shape Recognition [55.38462937452363]
本稿では,教師として事前訓練されたディープイメージエンコーダ,学生としてディープポイントエンコーダを含む多視点クロスモーダル蒸留アーキテクチャを提案する。
複数ビューの視覚的および幾何学的記述子をペアワイズにアライメントすることで、より強力なディープポイントエンコーダを、疲労や複雑なネットワーク修正を伴わずに得ることができる。
論文 参考訳(メタデータ) (2022-07-07T07:23:20Z) - Two-Stream Graph Convolutional Network for Intra-oral Scanner Image
Segmentation [133.02190910009384]
本稿では,2ストリームグラフ畳み込みネットワーク(TSGCN)を提案する。
TSGCNは3次元歯(表面)セグメンテーションにおいて最先端の方法よりも優れています。
論文 参考訳(メタデータ) (2022-04-19T10:41:09Z) - HistoTransfer: Understanding Transfer Learning for Histopathology [9.231495418218813]
我々は、ImageNetと病理組織データに基づいてトレーニングされたネットワークから抽出された特徴の性能を比較した。
より複雑なネットワークを用いて学習した機能が性能向上につながるかどうかを検討する。
論文 参考訳(メタデータ) (2021-06-13T18:55:23Z) - Fed-Sim: Federated Simulation for Medical Imaging [131.56325440976207]
本稿では、2つの学習可能なニューラルモジュールからなる物理駆動型生成手法を提案する。
データ合成フレームワークは、複数のデータセットの下流セグメンテーション性能を改善する。
論文 参考訳(メタデータ) (2020-09-01T19:17:46Z) - DeepFLASH: An Efficient Network for Learning-based Medical Image
Registration [8.781861951759948]
DeepFLASHは、学習に基づく医用画像登録のための効率的なトレーニングと推論を行う新しいネットワークである。
我々は2次元合成データと3次元実脳磁気共鳴(MR)画像の2つの異なる画像登録法でアルゴリズムを実証した。
論文 参考訳(メタデータ) (2020-04-05T05:17:07Z) - SAUNet: Shape Attentive U-Net for Interpretable Medical Image
Segmentation [2.6837973648527926]
本稿では,モデル解釈可能性とロバスト性に着目したShape Attentive U-Net(SAUNet)というアーキテクチャを提案する。
本手法は,SUN09とAC17の2つの大きな心内MRI画像セグメント化データセットに対して,最先端の結果を得られる。
論文 参考訳(メタデータ) (2020-01-21T16:48:54Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。