論文の概要: Visualizing Rule Sets: Exploration and Validation of a Design Space
- arxiv url: http://arxiv.org/abs/2103.01022v2
- Date: Thu, 4 Mar 2021 14:57:10 GMT
- ステータス: 処理完了
- システム内更新日: 2021-03-05 13:04:06.018175
- Title: Visualizing Rule Sets: Exploration and Validation of a Design Space
- Title(参考訳): ルールセットの視覚化:設計空間の探索と検証
- Authors: Jun Yuan, Oded Nov, Enrico Bertini
- Abstract要約: ルールセットは、透明性と知性が必要な設定でモデルロジックを伝える手段として、機械学習(ML)でよく使用される。
現在まで、ルールを提示するための視覚的な代替法を探求する作業は限られている。
この作業は、ルールをコミュニケーション戦略として使用してMLモデルを理解する際に、実践者がより効果的なソリューションを採用するのに役立ちます。
- 参考スコア(独自算出の注目度): 21.659381756612866
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Rule sets are often used in Machine Learning (ML) as a way to communicate the
model logic in settings where transparency and intelligibility are necessary.
Rule sets are typically presented as a text-based list of logical statements
(rules). Surprisingly, to date there has been limited work on exploring visual
alternatives for presenting rules. In this paper, we explore the idea of
designing alternative representations of rules, focusing on a number of visual
factors we believe have a positive impact on rule readability and
understanding. The paper presents an initial design space for visualizing rule
sets and a user study exploring their impact. The results show that some design
factors have a strong impact on how efficiently readers can process the rules
while having minimal impact on accuracy. This work can help practitioners
employ more effective solutions when using rules as a communication strategy to
understand ML models.
- Abstract(参考訳): ルールセットは、透明性と知性が必要な設定でモデルロジックを伝える手段として、機械学習(ML)でよく使用される。
ルールセットは通常、論理文(ルール)のテキストベースのリストとして表示される。
驚いたことに、これまでルールを提示するための視覚的な代替方法を探求する作業は限られていた。
本論文では,ルールの可読性や理解にポジティブな影響を与えると思われる視覚的要因に焦点をあてて,ルールの代替表現を設計するアイデアを検討する。
本稿では,ルールセットを視覚化するための初期設計空間と,その影響を探索するユーザスタディを提案する。
その結果, 設計要因のいくつかは, 精度への影響を最小限に抑えつつ, 読者がいかに効率的にルールを処理できるかに強い影響を与えていることがわかった。
この作業は、ルールをコミュニケーション戦略として使用してMLモデルを理解する際に、実践者がより効果的なソリューションを採用するのに役立ちます。
関連論文リスト
- LogicGame: Benchmarking Rule-Based Reasoning Abilities of Large Language Models [87.49676980090555]
大規模言語モデル(LLM)は、様々なタスクにまたがる顕著な能力を示し、複雑な問題解決能力を示している。
LLMの包括的なルール理解、実行、計画能力を評価するために設計された新しいベンチマークであるLogicGameを紹介する。
論文 参考訳(メタデータ) (2024-08-28T13:16:41Z) - Symbolic Working Memory Enhances Language Models for Complex Rule Application [87.34281749422756]
大規模言語モデル(LLM)は、顕著な推論性能を示しているが、多段階の推論に苦慮している。
本稿では,外部ワーキングメモリを用いたLLMの拡張と,ルール適用のためのニューロシンボリックフレームワークを提案する。
当社のフレームワークは,LLMベースのルール実装とシンボリックルールグラウンディングを反復的に実施する。
論文 参考訳(メタデータ) (2024-08-24T19:11:54Z) - DeepVoting: Learning Voting Rules with Tailored Embeddings [13.037431161285971]
我々は、よい投票規則を設計する問題は、投票規則の確率的なバージョンを学ぶことの1つに再キャストする。
社会的選択文献からの選好プロファイルの埋め込みにより,既存の投票ルールをより効率的に学習できることを示す。
また、埋め込みを用いて学習したルールを微調整して、公理特性を改善した新しい投票ルールを作成することも示している。
論文 参考訳(メタデータ) (2024-08-24T17:15:20Z) - Can LLMs Reason with Rules? Logic Scaffolding for Stress-Testing and Improving LLMs [87.34281749422756]
大規模言語モデル(LLM)は、様々な推論タスクにおいて、印象的な人間的なパフォーマンスを実現している。
しかし、その根底にある推論規則の熟達性は、人間の能力に欠ける。
本稿では,推論ルールベースであるULogicを構築するための,推論ルール生成フレームワークを提案する。
論文 参考訳(メタデータ) (2024-02-18T03:38:51Z) - ChatRule: Mining Logical Rules with Large Language Models for Knowledge
Graph Reasoning [107.61997887260056]
そこで我々は,知識グラフ上の論理ルールをマイニングするための大規模言語モデルの力を解き放つ新しいフレームワークChatRuleを提案する。
具体的には、このフレームワークは、KGのセマンティック情報と構造情報の両方を活用するLLMベースのルールジェネレータで開始される。
生成されたルールを洗練させるために、ルールランキングモジュールは、既存のKGから事実を取り入れてルール品質を推定する。
論文 参考訳(メタデータ) (2023-09-04T11:38:02Z) - Rule By Example: Harnessing Logical Rules for Explainable Hate Speech
Detection [13.772240348963303]
Rule By Example(RBE)は、テキストコンテンツモデレーションのタスクに対する論理規則から学習するための、新規なコントラスト学習手法である。
RBEはルール基底の予測を提供することができ、典型的なディープラーニングベースのアプローチと比較して説明可能でカスタマイズ可能な予測を可能にする。
論文 参考訳(メタデータ) (2023-07-24T16:55:37Z) - RulE: Knowledge Graph Reasoning with Rule Embedding [69.31451649090661]
我々は、論理ルールを活用してKG推論を強化する、textbfRulE(ルール埋め込みのためのスタンド)と呼ばれる原則的なフレームワークを提案する。
RulEは、既存の三重項と一階規則からルールの埋め込みを学習し、統一された埋め込み空間において、textbfentities、textbfrelations、textbflogical rulesを共同で表現する。
複数のベンチマークの結果、我々のモデルは既存の埋め込みベースのアプローチやルールベースのアプローチよりも優れています。
論文 参考訳(メタデータ) (2022-10-24T06:47:13Z) - An Exploration And Validation of Visual Factors in Understanding
Classification Rule Sets [21.659381756612866]
ルールセットは、透明性と知性が必要な設定でモデルロジックを伝える手段として、機械学習(ML)でよく使用される。
意外なことに、これまではルールを提示するための視覚的な代替策を探究する作業が限られていた。
この作業は、MLモデルを理解するためのコミュニケーション戦略としてルールを使用する場合、実践者がより効果的なソリューションを採用するのに役立つ。
論文 参考訳(メタデータ) (2021-09-19T16:33:16Z) - RNNLogic: Learning Logic Rules for Reasoning on Knowledge Graphs [91.71504177786792]
本稿では知識グラフに基づく推論のための論理規則の学習について研究する。
論理規則は、予測に使用されるときに解釈可能な説明を提供するとともに、他のタスクに一般化することができる。
既存の手法は、検索スペースの検索の問題や、スパース報酬による非効率な最適化に悩まされている。
論文 参考訳(メタデータ) (2020-10-08T14:47:02Z) - Towards Learning Instantiated Logical Rules from Knowledge Graphs [20.251630903853016]
本稿では,知識グラフから一階述語論理規則を抽出するために最適化された確率論的学習ルールGPFLを提案する。
GPFLは、抽出された経路を非循環的な抽象規則であるテンプレートに一般化する新しい2段階ルール生成機構を利用する。
オーバーフィッティングルールの存在、予測性能への影響、およびオーバーフィッティングルールをフィルタリングする単純なバリデーション手法の有効性を明らかにする。
論文 参考訳(メタデータ) (2020-03-13T00:32:46Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。