Class Means as an Early Exit Decision Mechanism
- URL: http://arxiv.org/abs/2103.01148v1
- Date: Mon, 1 Mar 2021 17:31:55 GMT
- Title: Class Means as an Early Exit Decision Mechanism
- Authors: Alperen Gormez and Erdem Koyuncu
- Abstract summary: We propose a novel early exit technique based on the class means of samples.
This makes our method particularly useful for neural network training in low-power devices.
- Score: 18.300490726072326
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: State-of-the-art neural networks with early exit mechanisms often need
considerable amount of training and fine-tuning to achieve good performance
with low computational cost. We propose a novel early exit technique based on
the class means of samples. Unlike most existing schemes, our method does not
require gradient-based training of internal classifiers. This makes our method
particularly useful for neural network training in low-power devices, as in
wireless edge networks. In particular, given a fixed training time budget, our
scheme achieves higher accuracy as compared to existing early exit mechanisms.
Moreover, if there are no limitations on the training time budget, our method
can be combined with an existing early exit scheme to boost its performance,
achieving a better trade-off between computational cost and network accuracy.
Related papers
- Joint or Disjoint: Mixing Training Regimes for Early-Exit Models [3.052154851421859]
Early exits significantly reduce the amount of computation required in deep neural networks.
Most early exit methods employ a training strategy that either simultaneously trains the backbone network and the exit heads or trains the exit heads separately.
We propose a training approach where the backbone is initially trained on its own, followed by a phase where both the backbone and the exit heads are trained together.
arXiv Detail & Related papers (2024-07-19T13:56:57Z) - Efficient Uncertainty Quantification and Reduction for
Over-Parameterized Neural Networks [23.7125322065694]
Uncertainty quantification (UQ) is important for reliability assessment and enhancement of machine learning models.
We create statistically guaranteed schemes to principally emphcharacterize, and emphremove, the uncertainty of over- parameterized neural networks.
In particular, our approach, based on what we call a procedural-noise-correcting (PNC) predictor, removes the procedural uncertainty by using only emphone auxiliary network that is trained on a suitably labeled dataset.
arXiv Detail & Related papers (2023-06-09T05:15:53Z) - Prospect Pruning: Finding Trainable Weights at Initialization using
Meta-Gradients [36.078414964088196]
Pruning neural networks at initialization would enable us to find sparse models that retain the accuracy of the original network.
Current methods are insufficient to enable this optimization and lead to a large degradation in model performance.
We propose Prospect Pruning (ProsPr), which uses meta-gradients through the first few steps of optimization to determine which weights to prune.
Our method achieves state-of-the-art pruning performance on a variety of vision classification tasks, with less data and in a single shot compared to existing pruning-at-initialization methods.
arXiv Detail & Related papers (2022-02-16T15:18:55Z) - Neural Capacitance: A New Perspective of Neural Network Selection via
Edge Dynamics [85.31710759801705]
Current practice requires expensive computational costs in model training for performance prediction.
We propose a novel framework for neural network selection by analyzing the governing dynamics over synaptic connections (edges) during training.
Our framework is built on the fact that back-propagation during neural network training is equivalent to the dynamical evolution of synaptic connections.
arXiv Detail & Related papers (2022-01-11T20:53:15Z) - Simultaneous Training of Partially Masked Neural Networks [67.19481956584465]
We show that it is possible to train neural networks in such a way that a predefined 'core' subnetwork can be split-off from the trained full network with remarkable good performance.
We show that training a Transformer with a low-rank core gives a low-rank model with superior performance than when training the low-rank model alone.
arXiv Detail & Related papers (2021-06-16T15:57:51Z) - A Simple Fine-tuning Is All You Need: Towards Robust Deep Learning Via
Adversarial Fine-tuning [90.44219200633286]
We propose a simple yet very effective adversarial fine-tuning approach based on a $textitslow start, fast decay$ learning rate scheduling strategy.
Experimental results show that the proposed adversarial fine-tuning approach outperforms the state-of-the-art methods on CIFAR-10, CIFAR-100 and ImageNet datasets.
arXiv Detail & Related papers (2020-12-25T20:50:15Z) - A Meta-Learning Approach to the Optimal Power Flow Problem Under
Topology Reconfigurations [69.73803123972297]
We propose a DNN-based OPF predictor that is trained using a meta-learning (MTL) approach.
The developed OPF-predictor is validated through simulations using benchmark IEEE bus systems.
arXiv Detail & Related papers (2020-12-21T17:39:51Z) - Adaptive Serverless Learning [114.36410688552579]
We propose a novel adaptive decentralized training approach, which can compute the learning rate from data dynamically.
Our theoretical results reveal that the proposed algorithm can achieve linear speedup with respect to the number of workers.
To reduce the communication-efficient overhead, we further propose a communication-efficient adaptive decentralized training approach.
arXiv Detail & Related papers (2020-08-24T13:23:02Z) - HAPI: Hardware-Aware Progressive Inference [18.214367595727037]
Convolutional neural networks (CNNs) have recently become the state-of-the-art in a diversity of AI tasks.
Despite their popularity, CNN inference still comes at a high computational cost.
This work presents HAPI, a novel methodology for generating high-performance early-exit networks.
arXiv Detail & Related papers (2020-08-10T09:55:18Z) - Rapid Structural Pruning of Neural Networks with Set-based Task-Adaptive
Meta-Pruning [83.59005356327103]
A common limitation of most existing pruning techniques is that they require pre-training of the network at least once before pruning.
We propose STAMP, which task-adaptively prunes a network pretrained on a large reference dataset by generating a pruning mask on it as a function of the target dataset.
We validate STAMP against recent advanced pruning methods on benchmark datasets.
arXiv Detail & Related papers (2020-06-22T10:57:43Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.