Efficient Uncertainty Quantification and Reduction for
Over-Parameterized Neural Networks
- URL: http://arxiv.org/abs/2306.05674v2
- Date: Fri, 10 Nov 2023 02:42:32 GMT
- Title: Efficient Uncertainty Quantification and Reduction for
Over-Parameterized Neural Networks
- Authors: Ziyi Huang, Henry Lam, Haofeng Zhang
- Abstract summary: Uncertainty quantification (UQ) is important for reliability assessment and enhancement of machine learning models.
We create statistically guaranteed schemes to principally emphcharacterize, and emphremove, the uncertainty of over- parameterized neural networks.
In particular, our approach, based on what we call a procedural-noise-correcting (PNC) predictor, removes the procedural uncertainty by using only emphone auxiliary network that is trained on a suitably labeled dataset.
- Score: 23.7125322065694
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Uncertainty quantification (UQ) is important for reliability assessment and
enhancement of machine learning models. In deep learning, uncertainties arise
not only from data, but also from the training procedure that often injects
substantial noises and biases. These hinder the attainment of statistical
guarantees and, moreover, impose computational challenges on UQ due to the need
for repeated network retraining. Building upon the recent neural tangent kernel
theory, we create statistically guaranteed schemes to principally
\emph{characterize}, and \emph{remove}, the uncertainty of over-parameterized
neural networks with very low computation effort. In particular, our approach,
based on what we call a procedural-noise-correcting (PNC) predictor, removes
the procedural uncertainty by using only \emph{one} auxiliary network that is
trained on a suitably labeled dataset, instead of many retrained networks
employed in deep ensembles. Moreover, by combining our PNC predictor with
suitable light-computation resampling methods, we build several approaches to
construct asymptotically exact-coverage confidence intervals using as low as
four trained networks without additional overheads.
Related papers
- Split-Boost Neural Networks [1.1549572298362787]
We propose an innovative training strategy for feed-forward architectures - called split-boost.
Such a novel approach ultimately allows us to avoid explicitly modeling the regularization term.
The proposed strategy is tested on a real-world (anonymized) dataset within a benchmark medical insurance design problem.
arXiv Detail & Related papers (2023-09-06T17:08:57Z) - Uncertainty Estimation by Fisher Information-based Evidential Deep
Learning [61.94125052118442]
Uncertainty estimation is a key factor that makes deep learning reliable in practical applications.
We propose a novel method, Fisher Information-based Evidential Deep Learning ($mathcalI$-EDL)
In particular, we introduce Fisher Information Matrix (FIM) to measure the informativeness of evidence carried by each sample, according to which we can dynamically reweight the objective loss terms to make the network more focused on the representation learning of uncertain classes.
arXiv Detail & Related papers (2023-03-03T16:12:59Z) - Quantization-aware Interval Bound Propagation for Training Certifiably
Robust Quantized Neural Networks [58.195261590442406]
We study the problem of training and certifying adversarially robust quantized neural networks (QNNs)
Recent work has shown that floating-point neural networks that have been verified to be robust can become vulnerable to adversarial attacks after quantization.
We present quantization-aware interval bound propagation (QA-IBP), a novel method for training robust QNNs.
arXiv Detail & Related papers (2022-11-29T13:32:38Z) - A simple approach for quantizing neural networks [7.056222499095849]
We propose a new method for quantizing the weights of a fully trained neural network.
A simple deterministic pre-processing step allows us to quantize network layers via memoryless scalar quantization.
The developed method also readily allows the quantization of deep networks by consecutive application to single layers.
arXiv Detail & Related papers (2022-09-07T22:36:56Z) - Can pruning improve certified robustness of neural networks? [106.03070538582222]
We show that neural network pruning can improve empirical robustness of deep neural networks (NNs)
Our experiments show that by appropriately pruning an NN, its certified accuracy can be boosted up to 8.2% under standard training.
We additionally observe the existence of certified lottery tickets that can match both standard and certified robust accuracies of the original dense models.
arXiv Detail & Related papers (2022-06-15T05:48:51Z) - Comparative Analysis of Interval Reachability for Robust Implicit and
Feedforward Neural Networks [64.23331120621118]
We use interval reachability analysis to obtain robustness guarantees for implicit neural networks (INNs)
INNs are a class of implicit learning models that use implicit equations as layers.
We show that our approach performs at least as well as, and generally better than, applying state-of-the-art interval bound propagation methods to INNs.
arXiv Detail & Related papers (2022-04-01T03:31:27Z) - NUQ: Nonparametric Uncertainty Quantification for Deterministic Neural
Networks [151.03112356092575]
We show the principled way to measure the uncertainty of predictions for a classifier based on Nadaraya-Watson's nonparametric estimate of the conditional label distribution.
We demonstrate the strong performance of the method in uncertainty estimation tasks on a variety of real-world image datasets.
arXiv Detail & Related papers (2022-02-07T12:30:45Z) - Confidence-Aware Learning for Deep Neural Networks [4.9812879456945]
We propose a method of training deep neural networks with a novel loss function, named Correctness Ranking Loss.
It regularizes class probabilities explicitly to be better confidence estimates in terms of ordinal ranking according to confidence.
It has almost the same computational costs for training as conventional deep classifiers and outputs reliable predictions by a single inference.
arXiv Detail & Related papers (2020-07-03T02:00:35Z) - Frequentist Uncertainty in Recurrent Neural Networks via Blockwise
Influence Functions [121.10450359856242]
Recurrent neural networks (RNNs) are instrumental in modelling sequential and time-series data.
Existing approaches for uncertainty quantification in RNNs are based predominantly on Bayesian methods.
We develop a frequentist alternative that: (a) does not interfere with model training or compromise its accuracy, (b) applies to any RNN architecture, and (c) provides theoretical coverage guarantees on the estimated uncertainty intervals.
arXiv Detail & Related papers (2020-06-20T22:45:32Z) - Depth Uncertainty in Neural Networks [2.6763498831034043]
Existing methods for estimating uncertainty in deep learning tend to require multiple forward passes.
By exploiting the sequential structure of feed-forward networks, we are able to both evaluate our training objective and make predictions with a single forward pass.
We validate our approach on real-world regression and image classification tasks.
arXiv Detail & Related papers (2020-06-15T14:33:40Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.