Noncoding RNAs and deep learning neural network discriminate
multi-cancer types
- URL: http://arxiv.org/abs/2103.01179v1
- Date: Mon, 1 Mar 2021 18:20:45 GMT
- Title: Noncoding RNAs and deep learning neural network discriminate
multi-cancer types
- Authors: Anyou Wang, Rong Hai, Paul J Rider, Harrison Dulin
- Abstract summary: We develop a comprehensive detection system to classify all common cancer types.
Our system can accurately detect cancer vs healthy object with 96.3% of AUC of ROC (Area Under Curve of a Receiver Operating Characteristic curve)
A comprehensive marker panel can simultaneously multi-classify all common cancers with a stable 78% of accuracy at heterological cancerous tissues and conditions.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Detecting cancers at early stages can dramatically reduce mortality rates.
Therefore, practical cancer screening at the population level is needed. Here,
we develop a comprehensive detection system to classify all common cancer
types. By integrating artificial intelligence deep learning neural network and
noncoding RNA biomarkers selected from massive data, our system can accurately
detect cancer vs healthy object with 96.3% of AUC of ROC (Area Under Curve of a
Receiver Operating Characteristic curve). Intriguinely, with no more than 6
biomarkers, our approach can easily discriminate any individual cancer type vs
normal with 99% to 100% AUC. Furthermore, a comprehensive marker panel can
simultaneously multi-classify all common cancers with a stable 78% of accuracy
at heterological cancerous tissues and conditions. This provides a valuable
framework for large scale cancer screening. The AI models and plots of results
were available in https://combai.org/ai/cancerdetection/
Related papers
- Biomarker based Cancer Classification using an Ensemble with Pre-trained Models [2.2436844508175224]
We propose a novel ensemble model combining pre-trained Hyperfast model, XGBoost, and LightGBM for multi-class classification tasks.
We leverage a meta-trained Hyperfast model for classifying cancer, accomplishing the highest AUC of 0.9929.
We also propose a novel ensemble model combining pre-trained Hyperfast model, XGBoost, and LightGBM for multi-class classification tasks, achieving an incremental increase in accuracy (0.9464)
arXiv Detail & Related papers (2024-06-14T14:43:59Z) - Boosting Medical Image-based Cancer Detection via Text-guided Supervision from Reports [68.39938936308023]
We propose a novel text-guided learning method to achieve highly accurate cancer detection results.
Our approach can leverage clinical knowledge by large-scale pre-trained VLM to enhance generalization ability.
arXiv Detail & Related papers (2024-05-23T07:03:38Z) - Cancer-Net BCa-S: Breast Cancer Grade Prediction using Volumetric Deep
Radiomic Features from Synthetic Correlated Diffusion Imaging [82.74877848011798]
The prevalence of breast cancer continues to grow, affecting about 300,000 females in the United States in 2023.
The gold-standard Scarff-Bloom-Richardson (SBR) grade has been shown to consistently indicate a patient's response to chemotherapy.
In this paper, we study the efficacy of deep learning for breast cancer grading based on synthetic correlated diffusion (CDI$s$) imaging.
arXiv Detail & Related papers (2023-04-12T15:08:34Z) - A Combined PCA-MLP Network for Early Breast Cancer Detection [0.0]
We have studied different machine learning algorithms to detect whether a patient is likely to face breast cancer or not.
Our 4 layers-PCA network has obtained the best accuracy of 100% with a mean of 90.48% on the BCCD dataset.
arXiv Detail & Related papers (2022-06-18T06:17:40Z) - Gene selection from microarray expression data: A Multi-objective PSO
with adaptive K-nearest neighborhood [0.0]
This paper deals with the classification problem of human cancer diseases by using gene expression data.
It is presented a new methodology to analyze microarray datasets and efficiently classify cancer diseases.
arXiv Detail & Related papers (2022-05-27T04:22:10Z) - Multi-Scale Hybrid Vision Transformer for Learning Gastric Histology:
AI-Based Decision Support System for Gastric Cancer Treatment [50.89811515036067]
Gastric endoscopic screening is an effective way to decide appropriate gastric cancer (GC) treatment at an early stage, reducing GC-associated mortality rate.
We propose a practical AI system that enables five subclassifications of GC pathology, which can be directly matched to general GC treatment guidance.
arXiv Detail & Related papers (2022-02-17T08:33:52Z) - EMT-NET: Efficient multitask network for computer-aided diagnosis of
breast cancer [58.720142291102135]
We propose an efficient and light-weighted learning architecture to classify and segment breast tumors simultaneously.
We incorporate a segmentation task into a tumor classification network, which makes the backbone network learn representations focused on tumor regions.
The accuracy, sensitivity, and specificity of tumor classification is 88.6%, 94.1%, and 85.3%, respectively.
arXiv Detail & Related papers (2022-01-13T05:24:40Z) - Wide & Deep neural network model for patch aggregation in CNN-based
prostate cancer detection systems [51.19354417900591]
Prostate cancer (PCa) is one of the leading causes of death among men, with almost 1.41 million new cases and around 375,000 deaths in 2020.
To perform an automatic diagnosis, prostate tissue samples are first digitized into gigapixel-resolution whole-slide images.
Small subimages called patches are extracted and predicted, obtaining a patch-level classification.
arXiv Detail & Related papers (2021-05-20T18:13:58Z) - MS-GWNN:multi-scale graph wavelet neural network for breast cancer
diagnosis [8.679247709183567]
It is crucial to take multi-scale information of tissue structure into account in the detection of breast cancer.
In this work, we present a novel graph convolutional neural network for his image classification of breast cancer.
arXiv Detail & Related papers (2020-12-29T06:04:27Z) - Topological Data Analysis of copy number alterations in cancer [70.85487611525896]
We explore the potential to capture information contained in cancer genomic information using a novel topology-based approach.
We find that this technique has the potential to extract meaningful low-dimensional representations in cancer somatic genetic data.
arXiv Detail & Related papers (2020-11-22T17:31:23Z) - Machine Learning Against Cancer: Accurate Diagnosis of Cancer by Machine
Learning Classification of the Whole Genome Sequencing Data [0.0]
We have developed novel methods of MLAC (Machine Learning Against Cancer) achieving perfect results with perfect precision, sensitivity, and specificity.
We have used the whole genome sequencing data acquired by next-generation RNA sequencing techniques in The Cancer Genome Atlas and Genotype-Tissue Expression projects for cancerous and healthy tissues respectively.
arXiv Detail & Related papers (2020-09-12T18:51:47Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.