Boosting Medical Image-based Cancer Detection via Text-guided Supervision from Reports
- URL: http://arxiv.org/abs/2405.14230v1
- Date: Thu, 23 May 2024 07:03:38 GMT
- Title: Boosting Medical Image-based Cancer Detection via Text-guided Supervision from Reports
- Authors: Guangyu Guo, Jiawen Yao, Yingda Xia, Tony C. W. Mok, Zhilin Zheng, Junwei Han, Le Lu, Dingwen Zhang, Jian Zhou, Ling Zhang,
- Abstract summary: We propose a novel text-guided learning method to achieve highly accurate cancer detection results.
Our approach can leverage clinical knowledge by large-scale pre-trained VLM to enhance generalization ability.
- Score: 68.39938936308023
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The absence of adequately sufficient expert-level tumor annotations hinders the effectiveness of supervised learning based opportunistic cancer screening on medical imaging. Clinical reports (that are rich in descriptive textual details) can offer a "free lunch'' supervision information and provide tumor location as a type of weak label to cope with screening tasks, thus saving human labeling workloads, if properly leveraged. However, predicting cancer only using such weak labels can be very changeling since tumors are usually presented in small anatomical regions compared to the whole 3D medical scans. Weakly semi-supervised learning (WSSL) utilizes a limited set of voxel-level tumor annotations and incorporates alongside a substantial number of medical images that have only off-the-shelf clinical reports, which may strike a good balance between minimizing expert annotation workload and optimizing screening efficacy. In this paper, we propose a novel text-guided learning method to achieve highly accurate cancer detection results. Through integrating diagnostic and tumor location text prompts into the text encoder of a vision-language model (VLM), optimization of weakly supervised learning can be effectively performed in the latent space of VLM, thereby enhancing the stability of training. Our approach can leverage clinical knowledge by large-scale pre-trained VLM to enhance generalization ability, and produce reliable pseudo tumor masks to improve cancer detection. Our extensive quantitative experimental results on a large-scale cancer dataset, including 1,651 unique patients, validate that our approach can reduce human annotation efforts by at least 70% while maintaining comparable cancer detection accuracy to competing fully supervised methods (AUC value 0.961 versus 0.966).
Related papers
- Biomarker based Cancer Classification using an Ensemble with Pre-trained Models [2.2436844508175224]
We propose a novel ensemble model combining pre-trained Hyperfast model, XGBoost, and LightGBM for multi-class classification tasks.
We leverage a meta-trained Hyperfast model for classifying cancer, accomplishing the highest AUC of 0.9929.
We also propose a novel ensemble model combining pre-trained Hyperfast model, XGBoost, and LightGBM for multi-class classification tasks, achieving an incremental increase in accuracy (0.9464)
arXiv Detail & Related papers (2024-06-14T14:43:59Z) - Improving Breast Cancer Grade Prediction with Multiparametric MRI Created Using Optimized Synthetic Correlated Diffusion Imaging [71.91773485443125]
Grading plays a vital role in breast cancer treatment planning.
The current tumor grading method involves extracting tissue from patients, leading to stress, discomfort, and high medical costs.
This paper examines using optimized CDI$s$ to improve breast cancer grade prediction.
arXiv Detail & Related papers (2024-05-13T15:48:26Z) - Self-Verification Improves Few-Shot Clinical Information Extraction [73.6905567014859]
Large language models (LLMs) have shown the potential to accelerate clinical curation via few-shot in-context learning.
They still struggle with issues regarding accuracy and interpretability, especially in mission-critical domains such as health.
Here, we explore a general mitigation framework using self-verification, which leverages the LLM to provide provenance for its own extraction and check its own outputs.
arXiv Detail & Related papers (2023-05-30T22:05:11Z) - Robust Tumor Detection from Coarse Annotations via Multi-Magnification
Ensembles [11.070094685209598]
We present a novel ensemble method that significantly improves the detection accuracy of metastasis on the open CAMELYON16 data set of sentinel lymph nodes of breast cancer patients.
Our experiments show that better results can be achieved with our technique making it clinically feasible to use for cancer diagnosis.
arXiv Detail & Related papers (2023-03-29T08:41:22Z) - Pre-screening breast cancer with machine learning and deep learning [0.0]
Deep learning can be used for pre-screening cancer by analyzing demographic and anthropometric information of patients.
Deep learning model with an input-layer architecture that is fine-tuned using feature selection can effectively distinguish between patients with and without cancer.
These findings suggest that deep learning algorithms applied to cancer pre-screening offer a radiation-free, non-invasive, and affordable complement to screening methods based on imagery.
arXiv Detail & Related papers (2023-02-05T15:27:50Z) - EMT-NET: Efficient multitask network for computer-aided diagnosis of
breast cancer [58.720142291102135]
We propose an efficient and light-weighted learning architecture to classify and segment breast tumors simultaneously.
We incorporate a segmentation task into a tumor classification network, which makes the backbone network learn representations focused on tumor regions.
The accuracy, sensitivity, and specificity of tumor classification is 88.6%, 94.1%, and 85.3%, respectively.
arXiv Detail & Related papers (2022-01-13T05:24:40Z) - Deep Semi-supervised Metric Learning with Dual Alignment for Cervical
Cancer Cell Detection [49.78612417406883]
We propose a novel semi-supervised deep metric learning method for cervical cancer cell detection.
Our model learns an embedding metric space and conducts dual alignment of semantic features on both the proposal and prototype levels.
We construct a large-scale dataset for semi-supervised cervical cancer cell detection for the first time, consisting of 240,860 cervical cell images.
arXiv Detail & Related papers (2021-04-07T17:11:27Z) - Automatic Generation of Interpretable Lung Cancer Scoring Models from
Chest X-Ray Images [9.525711971667679]
Lung cancer is the leading cause of cancer death worldwide.
Deep learning techniques are effective at automatically diagnosing lung cancer.
These techniques have yet to be clinically approved and adopted by the medical community.
arXiv Detail & Related papers (2020-12-10T04:11:59Z) - 3D Neural Network for Lung Cancer Risk Prediction on CT Volumes [0.6810862244331126]
Lung cancer is the most common cause of cancer death in the United States.
Lung cancer CT screening has been shown to reduce mortality by up to 40% and is now included in US screening guidelines.
Despite the use of standards for radiological diagnosis, persistent inter-grader variability and incomplete characterization of comprehensive imaging findings remain as limitations of current methods.
In this report, we reproduce a state-of-the-art deep learning algorithm for lung cancer risk prediction.
arXiv Detail & Related papers (2020-07-25T10:01:22Z) - Stan: Small tumor-aware network for breast ultrasound image segmentation [68.8204255655161]
We propose a novel deep learning architecture called Small Tumor-Aware Network (STAN) to improve the performance of segmenting tumors with different size.
The proposed approach outperformed the state-of-the-art approaches in segmenting small breast tumors.
arXiv Detail & Related papers (2020-02-03T22:25:01Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.