An End-to-End Network for Emotion-Cause Pair Extraction
- URL: http://arxiv.org/abs/2103.01544v2
- Date: Wed, 3 Mar 2021 06:57:09 GMT
- Title: An End-to-End Network for Emotion-Cause Pair Extraction
- Authors: Aaditya Singh and Shreeshail Hingane and Saim Wani and Ashutosh Modi
- Abstract summary: We propose an end-to-end model for the Emotion-Cause Pair Extraction (ECPE) task.
Due to the unavailability of an English language ECPE corpus, we adapt the NTCIR-13 ECE corpus and establish a baseline for the ECPE task on this dataset.
- Score: 3.016628653955123
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The task of Emotion-Cause Pair Extraction (ECPE) aims to extract all
potential clause-pairs of emotions and their corresponding causes in a
document. Unlike the more well-studied task of Emotion Cause Extraction (ECE),
ECPE does not require the emotion clauses to be provided as annotations.
Previous works on ECPE have either followed a multi-stage approach where
emotion extraction, cause extraction, and pairing are done independently or use
complex architectures to resolve its limitations. In this paper, we propose an
end-to-end model for the ECPE task. Due to the unavailability of an English
language ECPE corpus, we adapt the NTCIR-13 ECE corpus and establish a baseline
for the ECPE task on this dataset. On this dataset, the proposed method
produces significant performance improvements (~6.5 increase in F1 score) over
the multi-stage approach and achieves comparable performance to the
state-of-the-art methods.
Related papers
- ECR-Chain: Advancing Generative Language Models to Better Emotion-Cause Reasoners through Reasoning Chains [61.50113532215864]
Causal Emotion Entailment (CEE) aims to identify the causal utterances in a conversation that stimulate the emotions expressed in a target utterance.
Current works in CEE mainly focus on modeling semantic and emotional interactions in conversations.
We introduce a step-by-step reasoning method, Emotion-Cause Reasoning Chain (ECR-Chain), to infer the stimulus from the target emotional expressions in conversations.
arXiv Detail & Related papers (2024-05-17T15:45:08Z) - Enhancing EEG-to-Text Decoding through Transferable Representations from Pre-trained Contrastive EEG-Text Masked Autoencoder [69.7813498468116]
We propose Contrastive EEG-Text Masked Autoencoder (CET-MAE), a novel model that orchestrates compound self-supervised learning across and within EEG and text.
We also develop a framework called E2T-PTR (EEG-to-Text decoding using Pretrained Transferable Representations) to decode text from EEG sequences.
arXiv Detail & Related papers (2024-02-27T11:45:21Z) - Enhancing Large Language Model with Decomposed Reasoning for Emotion
Cause Pair Extraction [13.245873138716044]
Emotion-Cause Pair Extraction (ECPE) involves extracting clause pairs representing emotions and their causes in a document.
Inspired by recent work, we explore leveraging large language model (LLM) to address ECPE task without additional training.
We introduce chain-of-thought to mimic human cognitive process and propose the Decomposed Emotion-Cause Chain (DECC) framework.
arXiv Detail & Related papers (2024-01-31T10:20:01Z) - Instruction Tuning for Few-Shot Aspect-Based Sentiment Analysis [72.9124467710526]
generative approaches have been proposed to extract all four elements as (one or more) quadruplets from text as a single task.
We propose a unified framework for solving ABSA, and the associated sub-tasks to improve the performance in few-shot scenarios.
arXiv Detail & Related papers (2022-10-12T23:38:57Z) - Joint Alignment of Multi-Task Feature and Label Spaces for Emotion Cause
Pair Extraction [36.123715709125015]
Emotion cause pair extraction (ECPE) is one of the derived subtasks of emotion cause analysis (ECA)
ECPE shares rich inter-related features with emotion extraction (EE) and cause extraction (CE)
arXiv Detail & Related papers (2022-09-09T04:06:27Z) - Incorporating Dynamic Semantics into Pre-Trained Language Model for
Aspect-based Sentiment Analysis [67.41078214475341]
We propose Dynamic Re-weighting BERT (DR-BERT) to learn dynamic aspect-oriented semantics for ABSA.
Specifically, we first take the Stack-BERT layers as a primary encoder to grasp the overall semantic of the sentence.
We then fine-tune it by incorporating a lightweight Dynamic Re-weighting Adapter (DRA)
arXiv Detail & Related papers (2022-03-30T14:48:46Z) - Emotion-Cause Pair Extraction in Customer Reviews [3.561118125328526]
We aim to present our work in ECPE in the domain of online reviews.
With a manually annotated dataset, we explore an algorithm to extract emotion cause pairs using a neural network.
We propose a model using previous reference materials and combining emotion-cause pair extraction with research in the domain of emotion-aware word embeddings.
arXiv Detail & Related papers (2021-12-07T20:56:20Z) - Dynamic Programming Encoding for Subword Segmentation in Neural Machine
Translation [80.38621085548013]
This paper introduces Dynamic Programming (DPE) a new segmentation algorithm for tokenizing sentences into subword units.
A mixed character-subword transformer is proposed, which enables exact log marginal likelihood estimation and exact MAP inference to find target segmentations.
arXiv Detail & Related papers (2020-05-03T05:00:50Z) - A Dependency Syntactic Knowledge Augmented Interactive Architecture for
End-to-End Aspect-based Sentiment Analysis [73.74885246830611]
We propose a novel dependency syntactic knowledge augmented interactive architecture with multi-task learning for end-to-end ABSA.
This model is capable of fully exploiting the syntactic knowledge (dependency relations and types) by leveraging a well-designed Dependency Relation Embedded Graph Convolutional Network (DreGcn)
Extensive experimental results on three benchmark datasets demonstrate the effectiveness of our approach.
arXiv Detail & Related papers (2020-04-04T14:59:32Z) - ECSP: A New Task for Emotion-Cause Span-Pair Extraction and
Classification [0.9137554315375922]
We propose a new task: Emotion-Cause Span-Pair extraction and classification (ECSP)
ECSP aims to extract the potential span-pair of emotion and corresponding causes in a document, and make emotion classification for each pair.
We propose a span-based extract-then-classify (ETC) model, where emotion and cause are directly extracted and paired from the document.
arXiv Detail & Related papers (2020-03-07T03:36:47Z) - End-to-end Emotion-Cause Pair Extraction via Learning to Link [18.741585103275334]
Emotion-cause pair extraction (ECPE) aims at jointly investigating emotions and their underlying causes in documents.
Existing approaches to ECPE generally adopt a two-stage method, i.e., (1) emotion and cause detection, and then (2) pairing the detected emotions and causes.
We propose a multi-task learning model that can extract emotions, causes and emotion-cause pairs simultaneously in an end-to-end manner.
arXiv Detail & Related papers (2020-02-25T07:49:12Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.