Enhancing Large Language Model with Decomposed Reasoning for Emotion
Cause Pair Extraction
- URL: http://arxiv.org/abs/2401.17716v1
- Date: Wed, 31 Jan 2024 10:20:01 GMT
- Title: Enhancing Large Language Model with Decomposed Reasoning for Emotion
Cause Pair Extraction
- Authors: Jialiang Wu, Yi Shen, Ziheng Zhang, Longjun Cai
- Abstract summary: Emotion-Cause Pair Extraction (ECPE) involves extracting clause pairs representing emotions and their causes in a document.
Inspired by recent work, we explore leveraging large language model (LLM) to address ECPE task without additional training.
We introduce chain-of-thought to mimic human cognitive process and propose the Decomposed Emotion-Cause Chain (DECC) framework.
- Score: 13.245873138716044
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Emotion-Cause Pair Extraction (ECPE) involves extracting clause pairs
representing emotions and their causes in a document. Existing methods tend to
overfit spurious correlations, such as positional bias in existing benchmark
datasets, rather than capturing semantic features. Inspired by recent work, we
explore leveraging large language model (LLM) to address ECPE task without
additional training. Despite strong capabilities, LLMs suffer from
uncontrollable outputs, resulting in mediocre performance. To address this, we
introduce chain-of-thought to mimic human cognitive process and propose the
Decomposed Emotion-Cause Chain (DECC) framework. Combining inducing inference
and logical pruning, DECC guides LLMs to tackle ECPE task. We further enhance
the framework by incorporating in-context learning. Experiment results
demonstrate the strength of DECC compared to state-of-the-art supervised
fine-tuning methods. Finally, we analyze the effectiveness of each component
and the robustness of the method in various scenarios, including different LLM
bases, rebalanced datasets, and multi-pair extraction.
Related papers
- Enhancing Document-level Argument Extraction with Definition-augmented Heuristic-driven Prompting for LLMs [0.0]
Event Argument Extraction (EAE) is pivotal for extracting structured information from unstructured text.
We propose a novel Definition-augmented Heuristic-driven Prompting (DHP) method to enhance the performance of Large Language Models (LLMs) in document-level EAE.
arXiv Detail & Related papers (2024-08-30T19:03:14Z) - FactorLLM: Factorizing Knowledge via Mixture of Experts for Large Language Models [50.331708897857574]
We introduce FactorLLM, a novel approach that decomposes well-trained dense FFNs into sparse sub-networks without requiring any further modifications.
FactorLLM achieves comparable performance to the source model securing up to 85% model performance while obtaining over a 30% increase in inference speed.
arXiv Detail & Related papers (2024-08-15T16:45:16Z) - Decompose, Enrich, and Extract! Schema-aware Event Extraction using LLMs [45.83950260830323]
This work focuses on harnessing Large Language Models for automated Event Extraction.
It introduces a new method to address hallucination by decomposing the task into Event Detection and Event Argument Extraction.
arXiv Detail & Related papers (2024-06-03T06:55:10Z) - C-ICL: Contrastive In-context Learning for Information Extraction [54.39470114243744]
c-ICL is a novel few-shot technique that leverages both correct and incorrect sample constructions to create in-context learning demonstrations.
Our experiments on various datasets indicate that c-ICL outperforms previous few-shot in-context learning methods.
arXiv Detail & Related papers (2024-02-17T11:28:08Z) - LLMs Learn Task Heuristics from Demonstrations: A Heuristic-Driven Prompting Strategy for Document-Level Event Argument Extraction [12.673710691468264]
We introduce the Heuristic-Driven Link-of- Analogy (HD-LoA) prompting to address the challenge of example selection.
Inspired by the analogical reasoning of human, we propose the link-of-analogy prompting, which enables LLMs to process new situations.
Experiments show that our method outperforms existing prompting methods and few-shot supervised learning methods on document-level EAE datasets.
arXiv Detail & Related papers (2023-11-11T12:05:01Z) - Improving Open Information Extraction with Large Language Models: A
Study on Demonstration Uncertainty [52.72790059506241]
Open Information Extraction (OIE) task aims at extracting structured facts from unstructured text.
Despite the potential of large language models (LLMs) like ChatGPT as a general task solver, they lag behind state-of-the-art (supervised) methods in OIE tasks.
arXiv Detail & Related papers (2023-09-07T01:35:24Z) - Iterative Forward Tuning Boosts In-Context Learning in Language Models [88.25013390669845]
In this study, we introduce a novel two-stage framework to boost in-context learning in large language models (LLMs)
Specifically, our framework delineates the ICL process into two distinct stages: Deep-Thinking and test stages.
The Deep-Thinking stage incorporates a unique attention mechanism, i.e., iterative enhanced attention, which enables multiple rounds of information accumulation.
arXiv Detail & Related papers (2023-05-22T13:18:17Z) - ICL-D3IE: In-Context Learning with Diverse Demonstrations Updating for
Document Information Extraction [56.790794611002106]
Large language models (LLMs) have demonstrated remarkable results in various natural language processing (NLP) tasks with in-context learning.
We propose a simple but effective in-context learning framework called ICL-D3IE.
Specifically, we extract the most difficult and distinct segments from hard training documents as hard demonstrations.
arXiv Detail & Related papers (2023-03-09T06:24:50Z) - An End-to-End Network for Emotion-Cause Pair Extraction [3.016628653955123]
We propose an end-to-end model for the Emotion-Cause Pair Extraction (ECPE) task.
Due to the unavailability of an English language ECPE corpus, we adapt the NTCIR-13 ECE corpus and establish a baseline for the ECPE task on this dataset.
arXiv Detail & Related papers (2021-03-02T08:03:03Z) - Task-Feature Collaborative Learning with Application to Personalized
Attribute Prediction [166.87111665908333]
We propose a novel multi-task learning method called Task-Feature Collaborative Learning (TFCL)
Specifically, we first propose a base model with a heterogeneous block-diagonal structure regularizer to leverage the collaborative grouping of features and tasks.
As a practical extension, we extend the base model by allowing overlapping features and differentiating the hard tasks.
arXiv Detail & Related papers (2020-04-29T02:32:04Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.