論文の概要: Exploiting latent representation of sparse semantic layers for improved
short-term motion prediction with Capsule Networks
- arxiv url: http://arxiv.org/abs/2103.01644v1
- Date: Tue, 2 Mar 2021 11:13:43 GMT
- ステータス: 処理完了
- システム内更新日: 2021-03-06 02:00:52.430410
- Title: Exploiting latent representation of sparse semantic layers for improved
short-term motion prediction with Capsule Networks
- Title(参考訳): カプセルネットワークによる短期動作予測改善のためのスパース意味層の潜時表現
- Authors: Albert Dulian and John C. Murray
- Abstract要約: 本稿では,HD(High-Definition)マップの小さな領域に対応するスパースなセマンティクス層の階層的表現を学習する文脈において,Capsule Networks(CapsNets)の利用を検討する。
CapsNetsに基づくアーキテクチャを使用することで、検出された画像内の特徴間の階層的関係を維持すると同時に、プール操作によってしばしば発生する空間データの損失を防ぐことができる。
本モデルでは,ネットワーク全体の規模を大幅に削減しつつ,予測に関する最近の研究よりも大幅な改善を実現していることを示す。
- 参考スコア(独自算出の注目度): 0.12183405753834559
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: As urban environments manifest high levels of complexity it is of vital
importance that safety systems embedded within autonomous vehicles (AVs) are
able to accurately anticipate short-term future motion of nearby agents. This
problem can be further understood as generating a sequence of coordinates
describing the future motion of the tracked agent. Various proposed approaches
demonstrate significant benefits of using a rasterised top-down image of the
road, with a combination of Convolutional Neural Networks (CNNs), for
extraction of relevant features that define the road structure (eg. driveable
areas, lanes, walkways). In contrast, this paper explores use of Capsule
Networks (CapsNets) in the context of learning a hierarchical representation of
sparse semantic layers corresponding to small regions of the High-Definition
(HD) map. Each region of the map is dismantled into separate geometrical layers
that are extracted with respect to the agent's current position. By using an
architecture based on CapsNets the model is able to retain hierarchical
relationships between detected features within images whilst also preventing
loss of spatial data often caused by the pooling operation. We train and
evaluate our model on publicly available dataset nuTonomy scenes and compare it
to recently published methods. We show that our model achieves significant
improvement over recently published works on deterministic prediction, whilst
drastically reducing the overall size of the network.
- Abstract(参考訳): 都市環境が高度に複雑化する中、自動運転車(AV)に埋め込まれた安全システムは、近くのエージェントの短期的な将来の動きを正確に予測できることが非常に重要です。
この問題は、追跡されたエージェントの将来の動きを記述する座標列を生成することでさらに理解することができる。
道路構造を規定する特徴を抽出するための畳み込みニューラルネットワーク(CNN)を組み合わせることで,道路のラスタライズされたトップダウンイメージを使用することによる,様々な提案手法が有益であることを示す。
運転可能な区域、車線、通路)。
対照的に,本稿では,ハイデフィケーション(hd)マップの小さな領域に対応する疎意味層の階層的表現を学習する文脈において,カプセルネットワーク(capsnets)の利用について検討する。
地図の各領域は、エージェントの現在の位置に関して抽出された別々の幾何学的層に分解される。
CapsNetsに基づくアーキテクチャを使用することで、検出された画像内の特徴間の階層的関係を維持すると同時に、プール操作によってしばしば発生する空間データの損失を防ぐことができる。
公開データセットのnuTonomyシーンでモデルをトレーニングし、評価し、最近公開された方法と比較します。
提案手法は,ネットワーク全体のサイズを劇的に削減しながら,最近発表された決定論的予測よりも大幅に改善することを示す。
関連論文リスト
- Radio Map Prediction from Aerial Images and Application to Coverage Optimization [46.870065000932016]
畳み込みニューラルネットワークを用いた経路損失無線マップの予測に着目する。
既存の無線地図データセットに対して開発された最先端モデルがこの課題に効果的に適応できることを示す。
複雑さを低減した現在の最先端技術の性能をわずかに上回る新しいモデルを導入する。
論文 参考訳(メタデータ) (2024-10-07T09:19:20Z) - Traffic Prediction considering Multiple Levels of Spatial-temporal Information: A Multi-scale Graph Wavelet-based Approach [3.343804744266258]
本研究では,複雑な交通ネットワークにおける交通状態を予測するためのグラフウェーブレット時間畳み込みネットワーク(MSGWTCN)を提案する。
シアトルのハイウェイネットワークやニューヨーク市マンハッタンの高密度道路ネットワークなど、モデルのパフォーマンスを調べるために、2つの実世界のデータセットが使用されている。
論文 参考訳(メタデータ) (2024-06-18T20:05:47Z) - Exploring Geometric Deep Learning For Precipitation Nowcasting [28.44612565923532]
そこで我々は,降水量予測のための幾何学的深層学習に基づく時間的グラフ畳み込みネットワーク(GCN)を提案する。
格子セル間の相互作用をシミュレートする隣接行列は、予測と接地真理画素値とのL1損失を最小化することにより、自動的に学習される。
トレント/アイタリー地域におけるレーダ反射率マップの配列について実験を行った。
論文 参考訳(メタデータ) (2023-09-11T21:14:55Z) - Adaptive Hierarchical SpatioTemporal Network for Traffic Forecasting [70.66710698485745]
本稿では,AHSTN(Adaptive Hierarchical SpatioTemporal Network)を提案する。
AHSTNは空間階層を利用し、マルチスケール空間相関をモデル化する。
2つの実世界のデータセットの実験により、AHSTNはいくつかの強いベースラインよりも優れたパフォーマンスを達成することが示された。
論文 参考訳(メタデータ) (2023-06-15T14:50:27Z) - Network Embedding via Deep Prediction Model [25.727377978617465]
本稿では,深層予測モデルを用いて構造化ネットワーク上での転送挙動を捕捉するネットワーク埋め込みフレームワークを提案する。
ネットワーク構造埋め込み層は、Long Short-Term Memory NetworkやRecurrent Neural Networkなど、従来の深部予測モデルに付加される。
ソーシャルネットワーク, 引用ネットワーク, バイオメディカルネットワーク, 協調ネットワーク, 言語ネットワークなど, さまざまなデータセットについて実験を行った。
論文 参考訳(メタデータ) (2021-04-27T16:56:00Z) - SST-GNN: Simplified Spatio-temporal Traffic forecasting model using
Graph Neural Network [2.524966118517392]
我々は,SST-GNN(SST-GNN)を簡易に設計し,異なる地区を個別に集約することで依存性を効果的に符号化した。
我々は,本モデルが3つの実環境トラフィックデータセットの最先端モデルよりも大幅に優れていることを示した。
論文 参考訳(メタデータ) (2021-03-31T18:28:44Z) - PredRNN: A Recurrent Neural Network for Spatiotemporal Predictive
Learning [109.84770951839289]
歴史的文脈からビジュアルダイナミクスを学習するための新しいリカレントネットワークであるPredRNNを紹介する。
本手法は,3つの標準データセット上で高い競争結果が得られることを示す。
論文 参考訳(メタデータ) (2021-03-17T08:28:30Z) - Learning Lane Graph Representations for Motion Forecasting [92.88572392790623]
生の地図データからレーングラフを構築し,地図構造を保存する。
我々は,アクター・トゥ・レーン,レーン・トゥ・レーン,レーン・トゥ・アクター,アクター・トゥ・アクターの4種類のインタラクションからなる融合ネットワークを利用する。
提案手法は,大規模Argoverse運動予測ベンチマークにおいて,最先端の手法を著しく上回っている。
論文 参考訳(メタデータ) (2020-07-27T17:59:49Z) - VectorNet: Encoding HD Maps and Agent Dynamics from Vectorized
Representation [74.56282712099274]
本稿では,ベクトルで表される個々の道路成分の空間的局所性を利用する階層型グラフニューラルネットワークであるVectorNetを紹介する。
ベクトル化高定義(HD)マップとエージェントトラジェクトリの操作により、ロッキーなレンダリングや計算集約的なConvNetエンコーディングのステップを避けることができる。
我々は、社内行動予測ベンチマークと最近リリースされたArgoverse予測データセットでVectorNetを評価した。
論文 参考訳(メタデータ) (2020-05-08T19:07:03Z) - Constructing Geographic and Long-term Temporal Graph for Traffic
Forecasting [88.5550074808201]
交通予測のための地理・長期時間グラフ畳み込み型ニューラルネットワーク(GLT-GCRNN)を提案する。
本研究では,地理的・長期的時間的パターンを共有する道路間のリッチな相互作用を学習する交通予測のための新しいフレームワークを提案する。
論文 参考訳(メタデータ) (2020-04-23T03:50:46Z) - A Spatial-Temporal Attentive Network with Spatial Continuity for
Trajectory Prediction [74.00750936752418]
空間連続性をもつ空間時間減衰ネットワーク(STAN-SC)という新しいモデルを提案する。
まず、最も有用かつ重要な情報を探るために、空間的時間的注意機構を提示する。
第2に、生成軌道の空間的連続性を維持するために、シーケンスと瞬間状態情報に基づく共同特徴系列を実行する。
論文 参考訳(メタデータ) (2020-03-13T04:35:50Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。