論文の概要: Probabilistic Inference for Structural Health Monitoring: New Modes of
Learning from Data
- arxiv url: http://arxiv.org/abs/2103.01676v1
- Date: Tue, 2 Mar 2021 12:18:48 GMT
- ステータス: 処理完了
- システム内更新日: 2021-03-03 16:57:25.901847
- Title: Probabilistic Inference for Structural Health Monitoring: New Modes of
Learning from Data
- Title(参考訳): 構造ヘルスモニタリングのための確率的推論--データからの新しい学習モード
- Authors: Lawrence A. Bull, Paul Gardner, Timothy J. Rogers, Elizabeth J. Cross,
Nikolaos Dervilis, Keith Worden
- Abstract要約: データ駆動型SHMでは、運用中のシステムから記録された信号はノイズが多く不完全である。
確率アルゴリズムは、実際にSHMデータのモデリングに自然なソリューションを提供します。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: In data-driven SHM, the signals recorded from systems in operation can be
noisy and incomplete. Data corresponding to each of the operational,
environmental, and damage states are rarely available a priori; furthermore,
labelling to describe the measurements is often unavailable. In consequence,
the algorithms used to implement SHM should be robust and adaptive, while
accommodating for missing information in the training-data -- such that new
information can be included if it becomes available. By reviewing novel
techniques for statistical learning (introduced in previous work), it is argued
that probabilistic algorithms offer a natural solution to the modelling of SHM
data in practice. In three case-studies, probabilistic methods are adapted for
applications to SHM signals -- including semi-supervised learning, active
learning, and multi-task learning.
- Abstract(参考訳): データ駆動型SHMでは、運用中のシステムから記録された信号はノイズが多く不完全である。
操作状態、環境状態、損傷状態のそれぞれに対応するデータは、前もって利用されることは稀であり、さらに、測定値を記述するラベル付けは、しばしば利用できない。
その結果、SHMを実装するために使用されるアルゴリズムは堅牢で適応的であり、トレーニングデータに欠落した情報(新しい情報が利用可能になったら、新しい情報を含めることができる)を収容する必要がある。
統計的学習のための新しい手法(以前の研究で導入された)をレビューすることで、確率論的アルゴリズムは実際にSHMデータのモデリングに自然な解決策をもたらすと論じられている。
3つのケーススタディでは、半教師付き学習、アクティブ学習、マルチタスク学習を含むSHM信号への適用のために確率的手法が適応される。
関連論文リスト
- Data-driven Bayesian State Estimation with Compressed Measurement of Model-free Process using Semi-supervised Learning [57.04370580292727]
モデルフリープロセスの圧縮測定(BSCM)によるデータ駆動ベイズ状態の推定。
時間的測定ベクトルの次元は、推定される時間的状態ベクトルの次元よりも低い。
既存の2つの教師なし学習ベースのデータ駆動手法は、モデルフリープロセスのBSCM問題に対処できない。
半教師付き学習に基づくDANSE手法を開発し,その手法をSemiDANSEと呼ぶ。
論文 参考訳(メタデータ) (2024-07-10T05:03:48Z) - Querying Easily Flip-flopped Samples for Deep Active Learning [63.62397322172216]
アクティブラーニング(英: Active Learning)は、ラベルのないデータを戦略的に選択してクエリすることで、モデルの性能を向上させることを目的とした機械学習パラダイムである。
効果的な選択戦略の1つはモデルの予測の不確実性に基づくもので、サンプルがどの程度情報的であるかの尺度として解釈できる。
本稿では,予測されたラベルの不一致の最小確率として,最小不一致距離(LDM)を提案する。
論文 参考訳(メタデータ) (2024-01-18T08:12:23Z) - Data-CUBE: Data Curriculum for Instruction-based Sentence Representation
Learning [85.66907881270785]
本稿では,学習用マルチタスクデータの順序を列挙するデータカリキュラム,すなわちData-CUBEを提案する。
タスクレベルでは、タスク間の干渉リスクを最小化するために最適なタスクオーダーを見つけることを目的としている。
インスタンスレベルでは、タスク毎のすべてのインスタンスの難易度を測定し、トレーニングのためにそれらを簡単に微分できるミニバッチに分割します。
論文 参考訳(メタデータ) (2024-01-07T18:12:20Z) - Learning of networked spreading models from noisy and incomplete data [7.669018800404791]
スケーラブルな動的メッセージパッシング技術に基づく普遍的な学習手法を提案する。
このアルゴリズムは、モデルとデータに関する利用可能な事前知識を活用し、拡散モデルのネットワーク構造とパラメータの両方を再構成する。
キーモデルパラメータを持つ手法の線形計算複雑性は,アルゴリズムを大規模ネットワークインスタンスにスケーラブルにすることを示す。
論文 参考訳(メタデータ) (2023-12-20T13:12:47Z) - Continual Learning For On-Device Environmental Sound Classification [63.81276321857279]
デバイス上での環境音の分類のための簡易かつ効率的な連続学習法を提案する。
本手法は,サンプルごとの分類の不確実性を測定することにより,トレーニングの履歴データを選択する。
論文 参考訳(メタデータ) (2022-07-15T12:13:04Z) - Mitigating sampling bias in risk-based active learning via an EM
algorithm [0.0]
リスクベースのアクティブラーニングは、オンライン意思決定支援のための統計分類器を開発するためのアプローチである。
データラベルクエリは、初期データポイントに対する完全情報の期待値に応じてガイドされる。
半教師付きアプローチは、EMアルゴリズムを介して未ラベルデータの擬似ラベルを組み込むことでサンプリングバイアスに対処する。
論文 参考訳(メタデータ) (2022-06-25T08:48:25Z) - A Meta-learning Approach to Reservoir Computing: Time Series Prediction
with Limited Data [0.0]
本研究では,実験プロセスから適切なモデル構造を自動的に抽出するデータ駆動型手法を提案する。
簡単なベンチマーク問題に対して,我々のアプローチを実証する。
論文 参考訳(メタデータ) (2021-10-07T18:23:14Z) - DEALIO: Data-Efficient Adversarial Learning for Imitation from
Observation [57.358212277226315]
観察ifoからの模倣学習において、学習エージェントは、実演者の生成した制御信号にアクセスせずに、実演行動の観察のみを用いて実演エージェントを模倣しようとする。
近年、逆模倣学習に基づく手法は、ifO問題に対する最先端のパフォーマンスをもたらすが、データ非効率でモデルなしの強化学習アルゴリズムに依存するため、サンプルの複雑さに悩まされることが多い。
この問題は、サンプルの収集が時間、エネルギー、およびリスクの面で高いコストを被る可能性がある現実世界の設定に展開することは非現実的です。
よりデータ効率の高いifOアルゴリズムを提案する。
論文 参考訳(メタデータ) (2021-03-31T23:46:32Z) - An Online Learning Algorithm for a Neuro-Fuzzy Classifier with
Mixed-Attribute Data [9.061408029414455]
General Fuzzy min-max Neural Network (GFMMNN) は、データ分類のための効率的な神経ファジィシステムの一つである。
本稿ではGFMMNNのための拡張オンライン学習アルゴリズムを提案する。
提案手法は連続的特徴と分類的特徴の両方でデータセットを処理できる。
論文 参考訳(メタデータ) (2020-09-30T13:45:36Z) - Meta-Reinforcement Learning Robust to Distributional Shift via Model
Identification and Experience Relabeling [126.69933134648541]
本稿では,テスト時にアウト・オブ・ディストリビューション・タスクに直面した場合に,効率よく外挿できるメタ強化学習アルゴリズムを提案する。
我々の手法は単純な洞察に基づいており、動的モデルが非政治データに効率的かつ一貫して適応可能であることを認識している。
論文 参考訳(メタデータ) (2020-06-12T13:34:46Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。