Conceptualising Contestability: Perspectives on Contesting Algorithmic
Decisions
- URL: http://arxiv.org/abs/2103.01774v1
- Date: Tue, 23 Feb 2021 05:13:18 GMT
- Title: Conceptualising Contestability: Perspectives on Contesting Algorithmic
Decisions
- Authors: Henrietta Lyons, Eduardo Velloso and Tim Miller
- Abstract summary: We describe and analyse the perspectives of people and organisations who made submissions in response to Australia's proposed AI Ethics Framework'
Our findings reveal that while the nature of contestability is disputed, it is seen as a way to protect individuals, and it resembles contestability in relation to human decision-making.
- Score: 18.155121103400333
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: As the use of algorithmic systems in high-stakes decision-making increases,
the ability to contest algorithmic decisions is being recognised as an
important safeguard for individuals. Yet, there is little guidance on what
`contestability'--the ability to contest decisions--in relation to algorithmic
decision-making requires. Recent research presents different conceptualisations
of contestability in algorithmic decision-making. We contribute to this growing
body of work by describing and analysing the perspectives of people and
organisations who made submissions in response to Australia's proposed `AI
Ethics Framework', the first framework of its kind to include `contestability'
as a core ethical principle. Our findings reveal that while the nature of
contestability is disputed, it is seen as a way to protect individuals, and it
resembles contestability in relation to human decision-making. We reflect on
and discuss the implications of these findings.
Related papers
- A Decision Theoretic Framework for Measuring AI Reliance [23.353778024330165]
Humans frequently make decisions with the aid of artificially intelligent (AI) systems.
Researchers have identified ensuring that a human has appropriate reliance on an AI as a critical component of achieving complementary performance.
We propose a formal definition of reliance, based on statistical decision theory, which separates the concepts of reliance as the probability the decision-maker follows the AI's recommendation.
arXiv Detail & Related papers (2024-01-27T09:13:09Z) - Explaining by Imitating: Understanding Decisions by Interpretable Policy
Learning [72.80902932543474]
Understanding human behavior from observed data is critical for transparency and accountability in decision-making.
Consider real-world settings such as healthcare, in which modeling a decision-maker's policy is challenging.
We propose a data-driven representation of decision-making behavior that inheres transparency by design, accommodates partial observability, and operates completely offline.
arXiv Detail & Related papers (2023-10-28T13:06:14Z) - Online Decision Mediation [72.80902932543474]
Consider learning a decision support assistant to serve as an intermediary between (oracle) expert behavior and (imperfect) human behavior.
In clinical diagnosis, fully-autonomous machine behavior is often beyond ethical affordances.
arXiv Detail & Related papers (2023-10-28T05:59:43Z) - On the Complexity of Adversarial Decision Making [101.14158787665252]
We show that the Decision-Estimation Coefficient is necessary and sufficient to obtain low regret for adversarial decision making.
We provide new structural results that connect the Decision-Estimation Coefficient to variants of other well-known complexity measures.
arXiv Detail & Related papers (2022-06-27T06:20:37Z) - A Justice-Based Framework for the Analysis of Algorithmic
Fairness-Utility Trade-Offs [0.0]
In prediction-based decision-making systems, different perspectives can be at odds.
The short-term business goals of the decision makers are often in conflict with the decision subjects' wish to be treated fairly.
We propose a framework to make these value-laden choices clearly visible.
arXiv Detail & Related papers (2022-06-06T20:31:55Z) - The Statistical Complexity of Interactive Decision Making [126.04974881555094]
We provide a complexity measure, the Decision-Estimation Coefficient, that is proven to be both necessary and sufficient for sample-efficient interactive learning.
A unified algorithm design principle, Estimation-to-Decisions (E2D), transforms any algorithm for supervised estimation into an online algorithm for decision making.
arXiv Detail & Related papers (2021-12-27T02:53:44Z) - Legal perspective on possible fairness measures - A legal discussion
using the example of hiring decisions (preprint) [0.0]
We explain the different kinds of fairness concepts that might be applicable for the specific application of hiring decisions.
We analyze their pros and cons with regard to the respective fairness interpretation and evaluate them from a legal perspective.
arXiv Detail & Related papers (2021-08-16T06:41:39Z) - "A cold, technical decision-maker": Can AI provide explainability,
negotiability, and humanity? [47.36687555570123]
We present results of a qualitative study of algorithmic decision-making, comprised of five workshops conducted with a total of 60 participants.
We discuss participants' consideration of humanity in decision-making, and introduce the concept of 'negotiability,' the ability to go beyond formal criteria and work flexibly around the system.
arXiv Detail & Related papers (2020-12-01T22:36:54Z) - Inverse Active Sensing: Modeling and Understanding Timely
Decision-Making [111.07204912245841]
We develop a framework for the general setting of evidence-based decision-making under endogenous, context-dependent time pressure.
We demonstrate how it enables modeling intuitive notions of surprise, suspense, and optimality in decision strategies.
arXiv Detail & Related papers (2020-06-25T02:30:45Z) - Contestable Black Boxes [10.552465253379134]
This paper investigates the type of assurances that are needed in the contesting process when algorithmic black-boxes are involved.
We argue that specialised complementary methodologies to evaluate automated decision-making in the case of a particular decision being contested need to be developed.
arXiv Detail & Related papers (2020-06-09T09:09:00Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.