論文の概要: An Analysis of Distributed Systems Syllabi With a Focus on
Performance-Related Topics
- arxiv url: http://arxiv.org/abs/2103.01858v1
- Date: Tue, 2 Mar 2021 16:49:09 GMT
- ステータス: 処理完了
- システム内更新日: 2023-04-09 12:14:16.706858
- Title: An Analysis of Distributed Systems Syllabi With a Focus on
Performance-Related Topics
- Title(参考訳): パフォーマンス関連トピックに着目した分散システムsyllabiの分析
- Authors: Cristina L. Abad and Alexandru Iosup and Edwin F. Boza and Eduardo
Ortiz-Holguin
- Abstract要約: 我々は、トップコンピュータサイエンスプログラムから51の現在(2019-2020)の分散システムシラビのデータセットを分析した。
本研究では,DSコースで言及されているインフラの規模を,小規模なクライアントサーバシステムからクラウドスケール,ピアツーピア,グローバルスケールシステムまで検討する。
- 参考スコア(独自算出の注目度): 65.86247008403002
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We analyze a dataset of 51 current (2019-2020) Distributed Systems syllabi
from top Computer Science programs, focusing on finding the prevalence and
context in which topics related to performance are being taught in these
courses. We also study the scale of the infrastructure mentioned in DS courses,
from small client-server systems to cloud-scale, peer-to-peer, global-scale
systems. We make eight main findings, covering goals such as performance, and
scalability and its variant elasticity; activities such as performance
benchmarking and monitoring; eight selected performance-enhancing techniques
(replication, caching, sharding, load balancing, scheduling, streaming,
migrating, and offloading); and control issues such as trade-offs that include
performance and performance variability.
- Abstract(参考訳): 我々は,コンピュータサイエンスのトッププログラムから,51の現在(2019-2020)の分散システムシラビのデータセットを分析し,これらのコースでパフォーマンスに関するトピックが教えられている状況と状況を明らかにすることに焦点を当てた。
また,dsコースで言及されるインフラストラクチャの規模について,小規模クライアントサーバシステムからクラウドスケール,ピアツーピア,グローバルスケールシステムまで検討した。
パフォーマンス、スケーラビリティ、弾力性などの目標、パフォーマンスベンチマークやモニタリングなどのアクティビティ、選択された8つのパフォーマンス改善テクニック(レプリケーション、キャッシュ、シャーディング、ロードバランシング、スケジューリング、ストリーミング、マイグレーション、オフロード)、パフォーマンスとパフォーマンスの多様性を含むトレードオフのようなコントロールの問題など、主な8つの発見を行います。
関連論文リスト
- Optimizing Decentralized Online Learning for Supervised Regression and Classification Problems [0.0]
分散学習ネットワークは、複数の参加者が提供した生の推論から1つのネットワーク推論を合成することを目的としている。
分散学習ネットワークの普及にもかかわらず、関連する自由パラメータの校正を行う体系的な研究は存在しない。
ここでは、教師付き回帰と分類問題において、分散オンライン学習を管理するキーパラメータの最適化フレームワークを提案する。
論文 参考訳(メタデータ) (2025-01-27T21:36:54Z) - Online Continual Learning: A Systematic Literature Review of Approaches, Challenges, and Benchmarks [1.3631535881390204]
オンライン連続学習(OCL)は、機械学習において重要な分野である。
本研究は,OCLに関する総合的なシステム文献レビューを初めて実施する。
論文 参考訳(メタデータ) (2025-01-09T01:03:14Z) - Rethinking Resource Management in Edge Learning: A Joint Pre-training and Fine-tuning Design Paradigm [87.47506806135746]
一部のアプリケーションでは、エッジラーニングは、スクラッチから新しい2段階ラーニングへと焦点を移している。
本稿では,2段階のエッジ学習システムにおける共同コミュニケーションと計算資源管理の問題について考察する。
事前学習および微調整段階に対する共同資源管理の提案は,システム性能のトレードオフをうまくバランスさせることが示されている。
論文 参考訳(メタデータ) (2024-04-01T00:21:11Z) - MISS: Memory-efficient Instance Segmentation Framework By Visual Inductive Priors Flow Propagation [8.727456619750983]
トレーニングデータセットへの視覚的事前の戦略的統合は、テストデータ分布との整合性を高める潜在的なソリューションとして現れます。
MISSの有効性を実証的に評価し、限られたデータ可用性とメモリ制約を特徴とするシナリオにおいて、賞賛可能な性能を示す。
論文 参考訳(メタデータ) (2024-03-18T08:52:23Z) - Deep Configuration Performance Learning: A Systematic Survey and Taxonomy [3.077531983369872]
我々は6つの索引付けサービスにまたがる1,206件の検索済み論文を網羅し,ソフトウェアのパフォーマンス学習におけるディープラーニングのトピックを包括的にレビューする。
本研究は, 構成データ作成に関連する技術について, 重要な統計, 分類学, 強度, 弱点, 最適利用シナリオについて概説した。
また、調査した研究から、優れた実践と潜在的に問題となる現象を同定し、その分野における将来の機会に関する実行可能な提案と洞察を包括的にまとめる。
論文 参考訳(メタデータ) (2024-03-05T21:05:16Z) - On the Trade-off of Intra-/Inter-class Diversity for Supervised
Pre-training [72.8087629914444]
教師付き事前学習データセットのクラス内多様性(クラス毎のサンプル数)とクラス間多様性(クラス数)とのトレードオフの影響について検討した。
トレーニング前のデータセットのサイズが固定された場合、最高のダウンストリームのパフォーマンスは、クラス内/クラス間の多様性のバランスがとれる。
論文 参考訳(メタデータ) (2023-05-20T16:23:50Z) - Distributed intelligence on the Edge-to-Cloud Continuum: A systematic
literature review [62.997667081978825]
このレビューは、現在利用可能な機械学習とデータ分析のための最先端ライブラリとフレームワークに関する包括的なビジョンを提供することを目的としている。
現在利用可能なEdge-to-Cloud Continuumに関する実験的な研究のための、主要なシミュレーション、エミュレーション、デプロイメントシステム、テストベッドも調査されている。
論文 参考訳(メタデータ) (2022-04-29T08:06:05Z) - SOLIS -- The MLOps journey from data acquisition to actionable insights [62.997667081978825]
本稿では,基本的なクロスプラットフォームテンソルフレームワークとスクリプト言語エンジンを使用しながら,すべての要件をサポートする統合デプロイメントパイプラインとフリー・ツー・オペレートアプローチを提案する。
しかし、このアプローチは、実際のプロダクショングレードシステムに機械学習機能を実際にデプロイするために必要な手順やパイプラインを提供していない。
論文 参考訳(メタデータ) (2021-12-22T14:45:37Z) - MLPerfTM HPC: A Holistic Benchmark Suite for Scientific Machine Learning
on HPC Systems [32.621917787044396]
我々はMLCommonsTM Associationが推進する科学機械学習トレーニングアプリケーションのベンチマークスイートであるHPCを紹介する。
共同分析のための体系的なフレームワークを開発し、データステージング、アルゴリズム収束、計算性能の観点から比較する。
低レベルのメモリ、I/O、ネットワークの振る舞いに関して、各ベンチマークを特徴付けることで結論付ける。
論文 参考訳(メタデータ) (2021-10-21T20:30:12Z) - An Extensible Benchmark Suite for Learning to Simulate Physical Systems [60.249111272844374]
我々は、統一されたベンチマークと評価プロトコルへの一歩を踏み出すために、一連のベンチマーク問題を導入する。
本稿では,4つの物理系と,広く使用されている古典的時間ベースおよび代表的なデータ駆動手法のコレクションを提案する。
論文 参考訳(メタデータ) (2021-08-09T17:39:09Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。