論文の概要: Chemistry-informed Macromolecule Graph Representation for Similarity
Computation and Supervised Learning
- arxiv url: http://arxiv.org/abs/2103.02565v1
- Date: Wed, 3 Mar 2021 18:05:57 GMT
- ステータス: 処理完了
- システム内更新日: 2021-03-07 04:11:19.483282
- Title: Chemistry-informed Macromolecule Graph Representation for Similarity
Computation and Supervised Learning
- Title(参考訳): 類似性計算と教師付き学習のための化学インフォームドマクロ分子グラフ表現
- Authors: Somesh Mohapatra, Joyce An, Rafael G\'omez-Bombarelli
- Abstract要約: モノマーと結合をノードとエッジとして、マクロ分子グラフ表現を開発しています。
化学とトポロジーの異なる2つのマクロ分子間の化学類似性を,グラフ編集距離とグラフカーネルを用いて実証する。
私たちの研究には2つの意味があり、マクロ分子の表現、比較、学習のための一般的なフレームワークを提供します。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Macromolecules are large, complex molecules composed of covalently bonded
monomer units, existing in different stereochemical configurations and
topologies. As a result of such chemical diversity, representing, comparing,
and learning over macromolecules emerge as critical challenges. To address
this, we developed a macromolecule graph representation, with monomers and
bonds as nodes and edges, respectively. We captured the inherent chemistry of
the macromolecule by using molecular fingerprints for node and edge attributes.
For the first time, we demonstrated computation of chemical similarity between
2 macromolecules of varying chemistry and topology, using exact graph edit
distances and graph kernels. We also trained graph neural networks for a
variety of glycan classification tasks, achieving state-of-the-art results. Our
work has two-fold implications - it provides a general framework for
representation, comparison, and learning of macromolecules; and enables
quantitative chemistry-informed decision-making and iterative design in the
macromolecular chemical space.
- Abstract(参考訳): 高分子は、異なる立体化学的構成とトポロジーに存在する共有結合モノマー単位からなる、大きくて複雑な分子である。
このような化学多様性の結果、マクロ分子の表現、比較、学習が重要な課題として浮上する。
そこで我々は,モノマーと結合をそれぞれノードとエッジとするマクロ分子グラフ表現を開発した。
分子指紋をノードとエッジ属性に用い,マクロ分子の生化学的性質を捉えた。
グラフ編集距離とグラフカーネルを用いて,化学およびトポロジーの異なる2つのマクロ分子間の化学類似性の計算を初めて行った。
また,様々なグリカン分類タスクのためにグラフニューラルネットワークを訓練し,最新の結果を得た。
我々の研究は、マクロ分子の表現、比較、学習のための一般的なフレームワークを提供し、マクロ分子化学空間における定量的化学インフォームド決定および反復設計を可能にする。
関連論文リスト
- Molecular Property Prediction Based on Graph Structure Learning [29.516479802217205]
我々はGSL-MPPと呼ばれるグラフ構造学習(GSL)に基づくMPPアプローチを提案する。
具体的には、まず、分子グラフ上にグラフニューラルネットワーク(GNN)を適用し、分子表現を抽出する。
分子指紋を用いて分子類似性グラフ(MSG)を構築する。
論文 参考訳(メタデータ) (2023-12-28T06:45:13Z) - MolGrapher: Graph-based Visual Recognition of Chemical Structures [50.13749978547401]
化学構造を視覚的に認識するためにMolGrapherを導入する。
すべての候補原子と結合をノードとして扱い、それらをグラフ化する。
グラフニューラルネットワークを用いてグラフ内の原子と結合ノードを分類する。
論文 参考訳(メタデータ) (2023-08-23T16:16:11Z) - Bi-level Contrastive Learning for Knowledge-Enhanced Molecule
Representations [55.42602325017405]
本稿では,分子の2レベル構造を考慮した新しいGODE法を提案する。
異なるグラフ構造上で2つのグラフニューラルネットワーク(GNN)を事前訓練し、対照的な学習と組み合わせることで、GODEは分子構造を対応する知識グラフサブ構造と融合させる。
11の化学特性タスクを微調整した場合、我々のモデルは既存のベンチマークよりも優れており、分類タスクの平均ROC-AUCアップリフトは13.8%、回帰タスクの平均RMSE/MAEエンハンスメントは35.1%である。
論文 参考訳(メタデータ) (2023-06-02T15:49:45Z) - Atomic and Subgraph-aware Bilateral Aggregation for Molecular
Representation Learning [57.670845619155195]
我々は、原子とサブグラフを意識したバイラテラルアグリゲーション(ASBA)と呼ばれる分子表現学習の新しいモデルを導入する。
ASBAは、両方の種類の情報を統合することで、以前の原子単位とサブグラフ単位のモデルの限界に対処する。
本手法は,分子特性予測のための表現をより包括的に学習する方法を提供する。
論文 参考訳(メタデータ) (2023-05-22T00:56:00Z) - Conditional Graph Information Bottleneck for Molecular Relational
Learning [9.56625683182106]
本稿では,コア部分グラフを検出してグラフ間の相互作用を予測できる新しい関係学習フレームワークCGIBを提案する。
提案手法は化学反応の性質,すなわち分子の核部分構造がどの分子と相互作用するかによって異なることを模倣する。
論文 参考訳(メタデータ) (2023-04-29T01:17:43Z) - A Molecular Multimodal Foundation Model Associating Molecule Graphs with
Natural Language [63.60376252491507]
本稿では,分子グラフとその意味的関連テキストデータから事前学習した分子マルチモーダル基礎モデルを提案する。
我々のモデルは、生物学、化学、材料、環境、医学などの分野において、AIを動力とする分野に幅広い影響を与えるだろうと考えています。
論文 参考訳(メタデータ) (2022-09-12T00:56:57Z) - Graph-based Molecular Representation Learning [59.06193431883431]
分子表現学習(MRL)は、機械学習と化学科学を結びつけるための重要なステップである。
近年、MRLは、特に深層分子グラフ学習に基づく手法において、かなりの進歩を遂げている。
論文 参考訳(メタデータ) (2022-07-08T17:43:20Z) - Molecular Contrastive Learning with Chemical Element Knowledge Graph [16.136921143416927]
分子表現学習は、分子特性予測や薬物設計など、下流の複数のタスクに寄与する。
我々は,元素間の微視的関連を要約するケミカル要素知識グラフ(KG)を構築した。
最初のモジュールである知識誘導グラフ拡張は、ケミカル要素KGに基づいて元の分子グラフを増強する。
第2のモジュールである知識対応グラフ表現は、元の分子グラフの共通グラフエンコーダと知識対応メッセージパッシングニューラルネットワーク(KMPNN)を用いて分子表現を抽出し、拡張された分子グラフの複雑な情報をエンコードする。
論文 参考訳(メタデータ) (2021-12-01T15:04:39Z) - MolCLR: Molecular Contrastive Learning of Representations via Graph
Neural Networks [11.994553575596228]
MolCLRは、大規模なラベルなしの分子データセットのための自己監視学習フレームワークです。
原子マスキング、結合除去、サブグラフ除去の3つの新しい分子グラフ増強法を提案する。
提案手法は,多くの挑戦的データセットに対して最先端の性能を実現する。
論文 参考訳(メタデータ) (2021-02-19T17:35:18Z) - Advanced Graph and Sequence Neural Networks for Molecular Property
Prediction and Drug Discovery [53.00288162642151]
計算モデルや分子表現にまたがる包括的な機械学習ツール群であるMoleculeKitを開発した。
これらの表現に基づいて構築されたMoeculeKitには、ディープラーニングと、グラフとシーケンスデータのための従来の機械学習方法の両方が含まれている。
オンラインおよびオフラインの抗生物質発見と分子特性予測のタスクの結果から、MoneculeKitは以前の方法よりも一貫した改善を実現していることがわかる。
論文 参考訳(メタデータ) (2020-12-02T02:09:31Z) - Heterogeneous Molecular Graph Neural Networks for Predicting Molecule
Properties [12.897488702184306]
分子の新規なグラフ表現であるヘテロジニアス分子グラフ(HMG)を導入する。
HMGNNは、グローバル分子表現とアテンション機構を予測プロセスに組み込んでいる。
我々のモデルは、QM9データセット上の12タスクのうち9タスクで最先端のパフォーマンスを達成する。
論文 参考訳(メタデータ) (2020-09-26T23:29:41Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。