Scalable Learning With a Structural Recurrent Neural Network for
Short-Term Traffic Prediction
- URL: http://arxiv.org/abs/2103.02578v1
- Date: Wed, 3 Mar 2021 18:21:49 GMT
- Title: Scalable Learning With a Structural Recurrent Neural Network for
Short-Term Traffic Prediction
- Authors: Youngjoo Kim, Peng Wang, Lyudmila Mihaylova
- Abstract summary: This paper presents a scalable deep learning approach for short-term traffic prediction based on historical traffic data in a road network.
The SRNN model trained with data of a road network is able to predict traffic speed of different road networks, with the fixed number of parameters to train.
- Score: 12.550067622364162
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: This paper presents a scalable deep learning approach for short-term traffic
prediction based on historical traffic data in a vehicular road network.
Capturing the spatio-temporal relationship of the big data often requires a
significant amount of computational burden or an ad-hoc design aiming for a
specific type of road network. To tackle the problem, we combine a road network
graph with recurrent neural networks (RNNs) to construct a structural RNN
(SRNN). The SRNN employs a spatio-temporal graph to infer the interaction
between adjacent road segments as well as the temporal dynamics of the time
series data. The model is scalable thanks to two key aspects. First, the
proposed SRNN architecture is built by using the semantic similarity of the
spatio-temporal dynamic interactions of all segments. Second, we design the
architecture to deal with fixed-length tensors regardless of the graph
topology. With the real traffic speed data measured in the city of Santander,
we demonstrate the proposed SRNN outperforms the image-based approaches using
the capsule network (CapsNet) by 14.1% and the convolutional neural network
(CNN) by 5.87%, respectively, in terms of root mean squared error (RMSE).
Moreover, we show that the proposed model is scalable. The SRNN model trained
with data of a road network is able to predict traffic speed of different road
networks, with the fixed number of parameters to train.
Related papers
- Improving Traffic Flow Predictions with SGCN-LSTM: A Hybrid Model for Spatial and Temporal Dependencies [55.2480439325792]
This paper introduces the Signal-Enhanced Graph Convolutional Network Long Short Term Memory (SGCN-LSTM) model for predicting traffic speeds across road networks.
Experiments on the PEMS-BAY road network traffic dataset demonstrate the SGCN-LSTM model's effectiveness.
arXiv Detail & Related papers (2024-11-01T00:37:00Z) - A Multi-Graph Convolutional Neural Network Model for Short-Term Prediction of Turning Movements at Signalized Intersections [0.6215404942415159]
This study introduces a novel deep learning architecture, referred to as the multigraph convolution neural network (MGCNN) for turning movement prediction at intersections.
The proposed architecture combines a multigraph structure, built to model temporal variations in traffic data, with a spectral convolution operation to support modeling the spatial variations in traffic data over the graphs.
The model's ability to perform short-term predictions over 1, 2, 3, 4, and 5 minutes into the future was evaluated against four baseline state-of-the-art models.
arXiv Detail & Related papers (2024-06-02T05:41:25Z) - TCCT-Net: Two-Stream Network Architecture for Fast and Efficient Engagement Estimation via Behavioral Feature Signals [58.865901821451295]
We present a novel two-stream feature fusion "Tensor-Convolution and Convolution-Transformer Network" (TCCT-Net) architecture.
To better learn the meaningful patterns in the temporal-spatial domain, we design a "CT" stream that integrates a hybrid convolutional-transformer.
In parallel, to efficiently extract rich patterns from the temporal-frequency domain, we introduce a "TC" stream that uses Continuous Wavelet Transform (CWT) to represent information in a 2D tensor form.
arXiv Detail & Related papers (2024-04-15T06:01:48Z) - Dynamic Hypergraph Structure Learning for Traffic Flow Forecasting [35.0288931087826]
Traffic flow forecasting aims to predict future traffic conditions on the basis of networks and traffic conditions in the past.
The problem is typically solved by modeling complex-temporal correlations in traffic data using far-temporal neural networks (GNNs)
Existing methods follow the paradigm of message passing that aggregates neighborhood information linearly.
In this paper, we propose a model named Dynamic Hyper Structure Learning (DyHSL) for traffic flow prediction.
arXiv Detail & Related papers (2023-09-21T12:44:55Z) - Set-based Neural Network Encoding Without Weight Tying [91.37161634310819]
We propose a neural network weight encoding method for network property prediction.
Our approach is capable of encoding neural networks in a model zoo of mixed architecture.
We introduce two new tasks for neural network property prediction: cross-dataset and cross-architecture.
arXiv Detail & Related papers (2023-05-26T04:34:28Z) - Simpler is better: Multilevel Abstraction with Graph Convolutional
Recurrent Neural Network Cells for Traffic Prediction [6.968068088508505]
We present a new sequence-to-sequence architecture for graph neural networks (GNNs)
We also present a new benchmark benchmark dataset of street-level segment data in Montreal, Canada.
Our model improves performance by more than 7% for one-hour prediction compared to the baseline methods.
arXiv Detail & Related papers (2022-09-08T14:56:29Z) - LHNN: Lattice Hypergraph Neural Network for VLSI Congestion Prediction [70.31656245793302]
lattice hypergraph (LH-graph) is a novel graph formulation for circuits.
LHNN constantly achieves more than 35% improvements compared with U-nets and Pix2Pix on the F1 score.
arXiv Detail & Related papers (2022-03-24T03:31:18Z) - SST-GNN: Simplified Spatio-temporal Traffic forecasting model using
Graph Neural Network [2.524966118517392]
We have designed a simplified S-temporal GNN(SST-GNN) that effectively encodes the dependency by separately aggregating different neighborhood.
We have shown that our model has significantly outperformed the state-of-the-art models on three real-world traffic datasets.
arXiv Detail & Related papers (2021-03-31T18:28:44Z) - Spatio-temporal Modeling for Large-scale Vehicular Networks Using Graph
Convolutional Networks [110.80088437391379]
A graph-based framework called SMART is proposed to model and keep track of the statistics of vehicle-to-temporal (V2I) communication latency across a large geographical area.
We develop a graph reconstruction-based approach using a graph convolutional network integrated with a deep Q-networks algorithm.
Our results show that the proposed method can significantly improve both the accuracy and efficiency for modeling and the latency performance of large vehicular networks.
arXiv Detail & Related papers (2021-03-13T06:56:29Z) - Urban Traffic Flow Forecast Based on FastGCRNN [14.445176586630465]
It is hard to apply Fast Graph Contemporal Recurrent Neural Network (GCRN) to the large scale networks due to high computational complexity.
We propose to abstract the road network into a geometric graph and build a Fast Graph Contemporal Recurrent Neural Network (GCRN) to model the spatial-temporal dependencies of traffic flow.
Specifically, We use FastGCN unit to efficiently capture the topological relationship between the roads and the surrounding roads in the graph with reducing the computational complexity through importance sampling.
arXiv Detail & Related papers (2020-09-17T06:05:05Z) - Constructing Geographic and Long-term Temporal Graph for Traffic
Forecasting [88.5550074808201]
We propose Geographic and Long term Temporal Graph Convolutional Recurrent Neural Network (GLT-GCRNN) for traffic forecasting.
In this work, we propose a novel framework for traffic forecasting that learns the rich interactions between roads sharing similar geographic or longterm temporal patterns.
arXiv Detail & Related papers (2020-04-23T03:50:46Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.