Simpler is better: Multilevel Abstraction with Graph Convolutional
Recurrent Neural Network Cells for Traffic Prediction
- URL: http://arxiv.org/abs/2209.03858v1
- Date: Thu, 8 Sep 2022 14:56:29 GMT
- Title: Simpler is better: Multilevel Abstraction with Graph Convolutional
Recurrent Neural Network Cells for Traffic Prediction
- Authors: Naghmeh Shafiee Roudbari, Zachary Patterson, Ursula Eicker,
Charalambos Poullis
- Abstract summary: We present a new sequence-to-sequence architecture for graph neural networks (GNNs)
We also present a new benchmark benchmark dataset of street-level segment data in Montreal, Canada.
Our model improves performance by more than 7% for one-hour prediction compared to the baseline methods.
- Score: 6.968068088508505
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In recent years, graph neural networks (GNNs) combined with variants of
recurrent neural networks (RNNs) have reached state-of-the-art performance in
spatiotemporal forecasting tasks. This is particularly the case for traffic
forecasting, where GNN models use the graph structure of road networks to
account for spatial correlation between links and nodes. Recent solutions are
either based on complex graph operations or avoiding predefined graphs. This
paper proposes a new sequence-to-sequence architecture to extract the
spatiotemporal correlation at multiple levels of abstraction using GNN-RNN
cells with sparse architecture to decrease training time compared to more
complex designs. Encoding the same input sequence through multiple encoders,
with an incremental increase in encoder layers, enables the network to learn
general and detailed information through multilevel abstraction. We further
present a new benchmark dataset of street-level segment traffic data from
Montreal, Canada. Unlike highways, urban road segments are cyclic and
characterized by complicated spatial dependencies. Experimental results on the
METR-LA benchmark highway and our MSLTD street-level segment datasets
demonstrate that our model improves performance by more than 7% for one-hour
prediction compared to the baseline methods while reducing computing resource
requirements by more than half compared to other competing methods.
Related papers
- Improving Traffic Flow Predictions with SGCN-LSTM: A Hybrid Model for Spatial and Temporal Dependencies [55.2480439325792]
This paper introduces the Signal-Enhanced Graph Convolutional Network Long Short Term Memory (SGCN-LSTM) model for predicting traffic speeds across road networks.
Experiments on the PEMS-BAY road network traffic dataset demonstrate the SGCN-LSTM model's effectiveness.
arXiv Detail & Related papers (2024-11-01T00:37:00Z) - Adaptive Hierarchical SpatioTemporal Network for Traffic Forecasting [70.66710698485745]
We propose an Adaptive Hierarchical SpatioTemporal Network (AHSTN) to promote traffic forecasting.
AHSTN exploits the spatial hierarchy and modeling multi-scale spatial correlations.
Experiments on two real-world datasets show that AHSTN achieves better performance over several strong baselines.
arXiv Detail & Related papers (2023-06-15T14:50:27Z) - Graph-based Multi-ODE Neural Networks for Spatio-Temporal Traffic
Forecasting [8.832864937330722]
Long-range traffic forecasting remains a challenging task due to the intricate and extensive-temporal correlations observed in traffic networks.
In this paper, we propose a architecture called Graph-based Multi-ODE Neural Networks (GRAM-ODE) which is designed with multiple connective ODE-GNN modules to learn better representations.
Our extensive set of experiments conducted on six real-world datasets demonstrate the superior performance of GRAM-ODE compared with state-of-the-art baselines.
arXiv Detail & Related papers (2023-05-30T02:10:42Z) - Residual Graph Convolutional Recurrent Networks For Multi-step Traffic
Flow Forecasting [12.223433627287605]
We propose a new Spatial-temporal forecasting model, namely the Residual Graph Convolutional Recurrent Network (RGCRN)
The model uses our proposed Residual Graph Convolutional Network (ResGCN) to capture the fine-grained spatial correlation of the traffic road network.
Our comparative experimental results on two real datasets show that RGCRN improves on average by 20.66% compared to the best baseline model.
arXiv Detail & Related papers (2022-05-03T13:23:38Z) - LHNN: Lattice Hypergraph Neural Network for VLSI Congestion Prediction [70.31656245793302]
lattice hypergraph (LH-graph) is a novel graph formulation for circuits.
LHNN constantly achieves more than 35% improvements compared with U-nets and Pix2Pix on the F1 score.
arXiv Detail & Related papers (2022-03-24T03:31:18Z) - Dynamic Graph Convolutional Recurrent Network for Traffic Prediction:
Benchmark and Solution [18.309299822858243]
We propose a novel traffic prediction framework, named Dynamic Graph Contemporalal Recurrent Network (DGCRN)
In DGCRN, hyper-networks are designed to leverage and extract dynamic characteristics from node attributes.
We are the first to employ a generation method to model fine iteration of dynamic graph at each time step.
arXiv Detail & Related papers (2021-04-30T11:25:43Z) - SST-GNN: Simplified Spatio-temporal Traffic forecasting model using
Graph Neural Network [2.524966118517392]
We have designed a simplified S-temporal GNN(SST-GNN) that effectively encodes the dependency by separately aggregating different neighborhood.
We have shown that our model has significantly outperformed the state-of-the-art models on three real-world traffic datasets.
arXiv Detail & Related papers (2021-03-31T18:28:44Z) - Scalable Learning With a Structural Recurrent Neural Network for
Short-Term Traffic Prediction [12.550067622364162]
This paper presents a scalable deep learning approach for short-term traffic prediction based on historical traffic data in a road network.
The SRNN model trained with data of a road network is able to predict traffic speed of different road networks, with the fixed number of parameters to train.
arXiv Detail & Related papers (2021-03-03T18:21:49Z) - Data-Driven Learning of Geometric Scattering Networks [74.3283600072357]
We propose a new graph neural network (GNN) module based on relaxations of recently proposed geometric scattering transforms.
Our learnable geometric scattering (LEGS) module enables adaptive tuning of the wavelets to encourage band-pass features to emerge in learned representations.
arXiv Detail & Related papers (2020-10-06T01:20:27Z) - Constructing Geographic and Long-term Temporal Graph for Traffic
Forecasting [88.5550074808201]
We propose Geographic and Long term Temporal Graph Convolutional Recurrent Neural Network (GLT-GCRNN) for traffic forecasting.
In this work, we propose a novel framework for traffic forecasting that learns the rich interactions between roads sharing similar geographic or longterm temporal patterns.
arXiv Detail & Related papers (2020-04-23T03:50:46Z) - Binarized Graph Neural Network [65.20589262811677]
We develop a binarized graph neural network to learn the binary representations of the nodes with binary network parameters.
Our proposed method can be seamlessly integrated into the existing GNN-based embedding approaches.
Experiments indicate that the proposed binarized graph neural network, namely BGN, is orders of magnitude more efficient in terms of both time and space.
arXiv Detail & Related papers (2020-04-19T09:43:14Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.