論文の概要: Detecting Extraneous Content in Podcasts
- arxiv url: http://arxiv.org/abs/2103.02585v1
- Date: Wed, 3 Mar 2021 18:30:50 GMT
- ステータス: 処理完了
- システム内更新日: 2021-03-07 02:07:49.535991
- Title: Detecting Extraneous Content in Podcasts
- Title(参考訳): ポッドキャスト中の外部コンテンツの検出
- Authors: Sravana Reddy, Yongze Yu, Aasish Pappu, Aswin Sivaraman, Rezvaneh
Rezapour, Rosie Jones
- Abstract要約: 本稿では,ポッドキャスト記述と音声書き起こしの不要なコンテンツを検出するために,テキストパターンとリスニングパターンの両方を利用するモデルを提案する。
本モデルでは,ROUGEスコアを瞬時に改善し,要約で生成された外部コンテンツを減らすことができることを示す。
- 参考スコア(独自算出の注目度): 6.335863593761816
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Podcast episodes often contain material extraneous to the main content, such
as advertisements, interleaved within the audio and the written descriptions.
We present classifiers that leverage both textual and listening patterns in
order to detect such content in podcast descriptions and audio transcripts. We
demonstrate that our models are effective by evaluating them on the downstream
task of podcast summarization and show that we can substantively improve ROUGE
scores and reduce the extraneous content generated in the summaries.
- Abstract(参考訳): ポッドキャストのエピソードには、広告などのメインコンテンツに余計な素材が含まれており、音声と書き込まれた説明にインターリーブされる。
本論文では,ポッドキャスト記述や音声転写において,テキストパターンとリスニングパターンの両方を利用した分類器を提案する。
本モデルの有効性を,ポッドキャスト要約の下流タスクで評価し,ROUGEのスコアを安定的に改善し,要約で生成された外部コンテンツを減らすことができることを示す。
関連論文リスト
- AdVerb: Visually Guided Audio Dereverberation [49.958724234969445]
本稿では,新しいオーディオ・ビジュアル・デバーベレーション・フレームワークであるAdVerbを紹介する。
残響音に加えて視覚的手がかりを用いてクリーンオーディオを推定する。
論文 参考訳(メタデータ) (2023-08-23T18:20:59Z) - Towards Abstractive Grounded Summarization of Podcast Transcripts [33.268079036601634]
ポッドキャストの書き起こしの要約は、コンテンツ提供者と消費者の両方にとって実用的な利益である。
これは、コンシューマーがポッドキャストを聴くかどうかを素早く判断し、要約を書くためのコンテンツプロバイダの負荷を減らすのに役立つ。
しかし、ポッドキャストの要約は、入力に関する事実上の矛盾を含む重大な課題に直面している。
論文 参考訳(メタデータ) (2022-03-22T02:44:39Z) - Identifying Introductions in Podcast Episodes from Automatically
Generated Transcripts [0.0]
400以上のポッドキャストエピソードの完全な書き起こしのデータセットを新たに構築する。
これらの紹介には、エピソードのトピック、ホスト、ゲストに関する情報が含まれている。
我々は、事前訓練されたBERTと異なる拡張戦略に基づいて、3つのTransformerモデルを訓練する。
論文 参考訳(メタデータ) (2021-10-14T00:34:51Z) - Topic Model Robustness to Automatic Speech Recognition Errors in Podcast
Transcripts [4.526933031343007]
本研究では,音声認識エンジンが生成した転写文に適用した場合の潜在ディリクレ割当トピックモデルのロバスト性について検討する。
まず,自動文字起こしによる話題埋め込みとポッドキャスト作成者によるポッドキャスト記述のコサイン類似度スコアのベースラインを観察する。
そして、転写ノイズの増加に伴ってコサインの類似度が減少する様子を観察し、自動音声認識文字が誤りである場合でも、その転写から高品質なトピック埋め込みを得ることができると結論づける。
論文 参考訳(メタデータ) (2021-09-25T07:59:31Z) - StreamHover: Livestream Transcript Summarization and Annotation [54.41877742041611]
ライブストリームの書き起こしを注釈付けして要約するフレームワークであるStreamHoverを紹介します。
合計500時間以上のビデオに抽出的要約と抽象的要約を併用したベンチマークデータセットは,既存の注釈付きコーパスよりもはるかに大きい。
我々のモデルはより一般化され、強力なベースラインよりも性能が向上することを示す。
論文 参考訳(メタデータ) (2021-09-11T02:19:37Z) - Audiovisual Highlight Detection in Videos [78.26206014711552]
本研究は,タスク上の単一特徴の有効性研究と,一つの特徴を一度に残すアブレーション研究の2つの実験の結果である。
映像要約作業では,視覚的特徴がほとんどの情報を持ち,視覚的特徴を含む視覚的特徴が視覚のみの情報よりも向上することが示唆された。
その結果,映像要約タスクからハイライト検出タスクに特化して訓練されたモデルに知識を伝達できることが示唆された。
論文 参考訳(メタデータ) (2021-02-11T02:24:00Z) - QuerYD: A video dataset with high-quality text and audio narrations [85.6468286746623]
ビデオの検索とイベントのローカライゼーションのための大規模データセットQuerYDを紹介する。
データセットのユニークな特徴は、ビデオ毎に2つのオーディオトラック(オリジナルオーディオと高品質な音声記述)が利用可能であることです。
YouDescribeは、既存のYouTubeビデオに音声ナレーションを付加することで視覚障害者を支援するボランティアプロジェクトだ。
論文 参考訳(メタデータ) (2020-11-22T17:33:44Z) - Watch and Learn: Mapping Language and Noisy Real-world Videos with
Self-supervision [54.73758942064708]
我々は、明示的なアノテーションを使わずに、文章と騒々しいビデオスニペットのマッピングを学習することで、視覚と自然言語を理解するように機械に教える。
トレーニングと評価のために、多数のオンラインビデオとサブタイトルを含む新しいデータセットApartmenTourをコントリビュートする。
論文 参考訳(メタデータ) (2020-11-19T03:43:56Z) - A Two-Phase Approach for Abstractive Podcast Summarization [18.35061145103997]
ポッドキャストの要約は他のデータフォーマットの要約とは異なる。
文選択とSeq2seq学習という2段階の手法を提案する。
提案手法は,ROUGEに基づく測定と人的評価の両面で有望な結果をもたらす。
論文 参考訳(メタデータ) (2020-11-16T21:31:28Z) - PodSumm -- Podcast Audio Summarization [0.0]
テキストドメインからのガイダンスを用いて,ポッドキャストの要約を自動的に作成する手法を提案する。
このタスクにはデータセットが不足しているため、内部データセットをキュレートし、データ拡張の効果的なスキームを見つけ、アノテータから要約を集めるためのプロトコルを設計する。
本手法は, ROUGE-F(1/2/L) スコア0.63/0.53/0.63をデータセット上で達成する。
論文 参考訳(メタデータ) (2020-09-22T04:49:33Z) - Abstractive Summarization of Spoken and Written Instructions with BERT [66.14755043607776]
本稿では,BERTSumモデルの最初の対話型言語への応用について述べる。
我々は多種多様な話題にまたがるナレーションビデオの抽象要約を生成する。
我々は、これをインテリジェントな仮想アシスタントの機能として統合し、要求に応じて文字と音声の両方の指導内容の要約を可能にすることを想定する。
論文 参考訳(メタデータ) (2020-08-21T20:59:34Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。