論文の概要: Preventing Unauthorized Use of Proprietary Data: Poisoning for Secure
Dataset Release
- arxiv url: http://arxiv.org/abs/2103.02683v2
- Date: Fri, 5 Mar 2021 04:55:01 GMT
- ステータス: 処理完了
- システム内更新日: 2021-04-06 04:50:36.458597
- Title: Preventing Unauthorized Use of Proprietary Data: Poisoning for Secure
Dataset Release
- Title(参考訳): プロプライエタリデータの不正使用を防止する - セキュアなデータセットのリリース
- Authors: Liam Fowl, Ping-yeh Chiang, Micah Goldblum, Jonas Geiping, Arpit
Bansal, Wojtek Czaja, Tom Goldstein
- Abstract要約: 公開したデータを最小限に修正して、他人がトレーニングモデルに乗らないようにするデータ中毒法を開発しています。
我々は,imagenet分類と顔認識によるアプローチの成功を実証する。
- 参考スコア(独自算出の注目度): 52.504589728136615
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Large organizations such as social media companies continually release data,
for example user images. At the same time, these organizations leverage their
massive corpora of released data to train proprietary models that give them an
edge over their competitors. These two behaviors can be in conflict as an
organization wants to prevent competitors from using their own data to
replicate the performance of their proprietary models. We solve this problem by
developing a data poisoning method by which publicly released data can be
minimally modified to prevent others from train-ing models on it. Moreover, our
method can be used in an online fashion so that companies can protect their
data in real time as they release it.We demonstrate the success of our approach
onImageNet classification and on facial recognition.
- Abstract(参考訳): ソーシャルメディア企業などの大企業は、ユーザイメージなどのデータを継続的にリリースしている。
同時に、これらの組織は、リリース済みデータの膨大なコーパスを活用して、プロプライエタリなモデルをトレーニングし、競合他社に対して優位性を与えている。
この2つの行動は、競合企業が独自のデータを使用して独自のモデルのパフォーマンスを複製することを阻止しようとするため、対立する可能性がある。
本稿では,公開データを最小限に修正して,他者のトレーニングモデルに対処できるデータ中毒法を開発することにより,この問題を解決した。
さらに,本手法は,企業が公開時にリアルタイムでデータを保護し,画像ネットの分類と顔認識におけるアプローチの成功を実証するために,オンライン方式で利用することができる。
関連論文リスト
- Forget to Flourish: Leveraging Machine-Unlearning on Pretrained Language Models for Privacy Leakage [12.892449128678516]
下流アプリケーション用のプライベートデータ上の微調整言語モデルは、重大なプライバシーリスクを生じさせる。
いくつかの人気のあるコミュニティプラットフォームが、様々な事前訓練されたモデルの便利な配布を提供している。
本稿では,モデル学習を攻撃ツールとして利用する新しい毒殺手法を提案する。
論文 参考訳(メタデータ) (2024-08-30T15:35:09Z) - No Vandalism: Privacy-Preserving and Byzantine-Robust Federated Learning [18.1129191782913]
フェデレートされた学習により、複数のクライアントがプライベートデータを共有せずに1つの機械学習モデルを共同でトレーニングし、プライバシ保護を提供する。
従来の連合学習は、毒性攻撃に弱いため、モデルの性能を低下させるだけでなく、悪意のあるバックドアを埋め込むこともできる。
本稿では,悪意ある参加者からの攻撃に対して,有害行為(NoV)のない環境を提供するために,プライバシ保護とビザンチン損なうフェデレーション・ラーニング・スキームを構築することを目的とする。
論文 参考訳(メタデータ) (2024-06-03T07:59:10Z) - Stop Uploading Test Data in Plain Text: Practical Strategies for
Mitigating Data Contamination by Evaluation Benchmarks [70.39633252935445]
データ汚染は、大規模な自動クロールコーパスで事前訓練されたモデルの台頭によって、普及し、課題となっている。
クローズドモデルの場合、トレーニングデータはトレードシークレットになり、オープンモデルであっても汚染を検出するのは簡単ではない。
1)公開するテストデータを公開鍵で暗号化し,デリバティブ配信を許可する,(2)クローズドAPI保持者からの要求トレーニング排他的コントロールを許可する,(2)評価を拒否してテストデータを保護する,(3)インターネット上のソリューションで表示されるデータを避け,インターネット由来のWebページコンテキストを解放する,という3つの方法を提案する。
論文 参考訳(メタデータ) (2023-05-17T12:23:38Z) - Protecting User Privacy in Online Settings via Supervised Learning [69.38374877559423]
我々は、教師付き学習を活用する、オンラインプライバシ保護に対するインテリジェントなアプローチを設計する。
ユーザのプライバシを侵害する可能性のあるデータ収集を検出してブロックすることにより、ユーザに対してある程度のディジタルプライバシを復元することが可能になります。
論文 参考訳(メタデータ) (2023-04-06T05:20:16Z) - The Devil's Advocate: Shattering the Illusion of Unexploitable Data
using Diffusion Models [14.018862290487617]
データ保護の摂動に対抗して、慎重に設計された分極処理が可能であることを示す。
AVATARと呼ばれる我々のアプローチは、最近のアベイラビリティーアタックに対して最先端のパフォーマンスを提供する。
論文 参考訳(メタデータ) (2023-03-15T10:20:49Z) - Membership Inference Attacks against Synthetic Data through Overfitting
Detection [84.02632160692995]
我々は、攻撃者が基礎となるデータ分布についてある程度の知識を持っていると仮定する現実的なMIA設定について論じる。
生成モデルの局所的なオーバーフィッティングをターゲットとして,メンバシップを推論することを目的とした密度ベースMIAモデルであるDOMIASを提案する。
論文 参考訳(メタデータ) (2023-02-24T11:27:39Z) - ConfounderGAN: Protecting Image Data Privacy with Causal Confounder [85.6757153033139]
本稿では,GAN(Generative Adversarial Network)のConfounderGANを提案する。
実験は、3つの自然なオブジェクトデータセットと3つの医療データセットからなる6つの画像分類データセットで実施される。
論文 参考訳(メタデータ) (2022-12-04T08:49:14Z) - Dataset Security for Machine Learning: Data Poisoning, Backdoor Attacks,
and Defenses [150.64470864162556]
この作業は体系的に分類され、幅広いデータセット脆弱性とエクスプロイトを議論する。
様々な毒とバックドアの脅威モデルとそれらの関係を記述することに加えて,それらの統一分類法を展開する。
論文 参考訳(メタデータ) (2020-12-18T22:38:47Z) - Amnesiac Machine Learning [15.680008735220785]
最近制定された一般データ保護規則は、欧州連合の居住者に関するデータを持つデータ保有者に影響を与えている。
モデルは、モデル反転攻撃のような情報漏洩攻撃に対して脆弱である。
我々は、モデル所有者が規制に準拠しながら、そのような攻撃から身を守ることのできる、UnlearningとAmnesiac Unlearningの2つのデータ除去方法を提案する。
論文 参考訳(メタデータ) (2020-10-21T13:14:17Z) - Anonymizing Machine Learning Models [0.0]
匿名化されたデータは、EU一般データ保護規則などの規則で定められた義務から除外される。
そこで本研究では,学習モデル内に符号化された知識を用いて,より優れたモデル精度を実現する手法を提案する。
また、当社のアプローチには、差分プライバシーに基づくアプローチとして、メンバーシップアタックを防止できる機能があることも示しています。
論文 参考訳(メタデータ) (2020-07-26T09:29:03Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。