Malware Classification Using Long Short-Term Memory Models
- URL: http://arxiv.org/abs/2103.02746v1
- Date: Wed, 3 Mar 2021 23:14:03 GMT
- Title: Malware Classification Using Long Short-Term Memory Models
- Authors: Dennis Dang and Fabio Di Troia and Mark Stamp
- Abstract summary: We create four different long-short term memory (LSTM) based models and train each to classify malware samples from 20 families.
We employ techniques used in natural language processing (NLP), including word embedding and bidirection LSTMs.
We find that a model consisting of word embedding, biLSTMs, and CNN layers performs best in our malware classification experiments.
- Score: 6.961253535504979
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Signature and anomaly based techniques are the quintessential approaches to
malware detection. However, these techniques have become increasingly
ineffective as malware has become more sophisticated and complex. Researchers
have therefore turned to deep learning to construct better performing model. In
this paper, we create four different long-short term memory (LSTM) based models
and train each to classify malware samples from 20 families. Our features
consist of opcodes extracted from malware executables. We employ techniques
used in natural language processing (NLP), including word embedding and
bidirection LSTMs (biLSTM), and we also use convolutional neural networks
(CNN). We find that a model consisting of word embedding, biLSTMs, and CNN
layers performs best in our malware classification experiments.
Related papers
- Masked LoGoNet: Fast and Accurate 3D Image Analysis for Medical Domain [48.440691680864745]
We introduce a new neural network architecture, termed LoGoNet, with a tailored self-supervised learning (SSL) method.
LoGoNet integrates a novel feature extractor within a U-shaped architecture, leveraging Large Kernel Attention (LKA) and a dual encoding strategy.
We propose a novel SSL method tailored for 3D images to compensate for the lack of large labeled datasets.
arXiv Detail & Related papers (2024-02-09T05:06:58Z) - New Approach to Malware Detection Using Optimized Convolutional Neural
Network [0.0]
This paper proposes a new convolutional deep learning neural network to accurately and effectively detect malware with high precision.
The baseline model initially achieves 98% accurate rate but after increasing the depth of the CNN model, its accuracy reaches 99.183.
To further solidify the effectiveness of this CNN model, we use the improved model to make predictions on new malware samples within our dataset.
arXiv Detail & Related papers (2023-01-26T15:06:47Z) - Deep learning applied to computational mechanics: A comprehensive
review, state of the art, and the classics [77.34726150561087]
Recent developments in artificial neural networks, particularly deep learning (DL), are reviewed in detail.
Both hybrid and pure machine learning (ML) methods are discussed.
History and limitations of AI are recounted and discussed, with particular attention at pointing out misstatements or misconceptions of the classics.
arXiv Detail & Related papers (2022-12-18T02:03:00Z) - Incremental Online Learning Algorithms Comparison for Gesture and Visual
Smart Sensors [68.8204255655161]
This paper compares four state-of-the-art algorithms in two real applications: gesture recognition based on accelerometer data and image classification.
Our results confirm these systems' reliability and the feasibility of deploying them in tiny-memory MCUs.
arXiv Detail & Related papers (2022-09-01T17:05:20Z) - Task-Aware Meta Learning-based Siamese Neural Network for Classifying
Obfuscated Malware [5.293553970082943]
Existing malware detection methods fail to correctly classify different malware families when obfuscated malware samples are present in the training dataset.
We propose a novel task-aware few-shot-learning-based Siamese Neural Network that is resilient against such control flow obfuscation techniques.
Our proposed approach is highly effective in recognizing unique malware signatures, thus correctly classifying malware samples that belong to the same malware family.
arXiv Detail & Related papers (2021-10-26T04:44:13Z) - Gone Fishing: Neural Active Learning with Fisher Embeddings [55.08537975896764]
There is an increasing need for active learning algorithms that are compatible with deep neural networks.
This article introduces BAIT, a practical representation of tractable, and high-performing active learning algorithm for neural networks.
arXiv Detail & Related papers (2021-06-17T17:26:31Z) - Binary Black-box Evasion Attacks Against Deep Learning-based Static
Malware Detectors with Adversarial Byte-Level Language Model [11.701290164823142]
MalRNN is a novel approach to automatically generate evasive malware variants without restrictions.
MalRNN effectively evades three recent deep learning-based malware detectors and outperforms current benchmark methods.
arXiv Detail & Related papers (2020-12-14T22:54:53Z) - Classifying Malware Images with Convolutional Neural Network Models [2.363388546004777]
In this paper, we use several convolutional neural network (CNN) models for static malware classification.
The Inception V3 model achieves a test accuracy of 99.24%, which is better than the accuracy of 98.52% achieved by the current state-of-the-art system.
arXiv Detail & Related papers (2020-10-30T07:39:30Z) - Exploring Optimal Deep Learning Models for Image-based Malware Variant
Classification [3.8073142980733]
We study the impact of differences in deep learning models and the degree of transfer learning on the classification accuracy of malware variants.
We found that the highest classification accuracy was obtained by fine-tuning one of the latest deep learning models with a relatively low degree of transfer learning.
arXiv Detail & Related papers (2020-04-10T23:45:54Z) - Depth-Adaptive Graph Recurrent Network for Text Classification [71.20237659479703]
Sentence-State LSTM (S-LSTM) is a powerful and high efficient graph recurrent network.
We propose a depth-adaptive mechanism for the S-LSTM, which allows the model to learn how many computational steps to conduct for different words as required.
arXiv Detail & Related papers (2020-02-29T03:09:55Z) - The Microsoft Toolkit of Multi-Task Deep Neural Networks for Natural
Language Understanding [97.85957811603251]
We present MT-DNN, an open-source natural language understanding (NLU) toolkit that makes it easy for researchers and developers to train customized deep learning models.
Built upon PyTorch and Transformers, MT-DNN is designed to facilitate rapid customization for a broad spectrum of NLU tasks.
A unique feature of MT-DNN is its built-in support for robust and transferable learning using the adversarial multi-task learning paradigm.
arXiv Detail & Related papers (2020-02-19T03:05:28Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.