Deep learning applied to computational mechanics: A comprehensive
review, state of the art, and the classics
- URL: http://arxiv.org/abs/2212.08989v3
- Date: Tue, 20 Jun 2023 01:01:34 GMT
- Title: Deep learning applied to computational mechanics: A comprehensive
review, state of the art, and the classics
- Authors: Loc Vu-Quoc and Alexander Humer
- Abstract summary: Recent developments in artificial neural networks, particularly deep learning (DL), are reviewed in detail.
Both hybrid and pure machine learning (ML) methods are discussed.
History and limitations of AI are recounted and discussed, with particular attention at pointing out misstatements or misconceptions of the classics.
- Score: 77.34726150561087
- License: http://creativecommons.org/licenses/by-sa/4.0/
- Abstract: Three recent breakthroughs due to AI in arts and science serve as motivation:
An award winning digital image, protein folding, fast matrix multiplication.
Many recent developments in artificial neural networks, particularly deep
learning (DL), applied and relevant to computational mechanics (solid, fluids,
finite-element technology) are reviewed in detail. Both hybrid and pure machine
learning (ML) methods are discussed. Hybrid methods combine traditional PDE
discretizations with ML methods either (1) to help model complex nonlinear
constitutive relations, (2) to nonlinearly reduce the model order for efficient
simulation (turbulence), or (3) to accelerate the simulation by predicting
certain components in the traditional integration methods. Here, methods (1)
and (2) relied on Long-Short-Term Memory (LSTM) architecture, with method (3)
relying on convolutional neural networks. Pure ML methods to solve (nonlinear)
PDEs are represented by Physics-Informed Neural network (PINN) methods, which
could be combined with attention mechanism to address discontinuous solutions.
Both LSTM and attention architectures, together with modern and generalized
classic optimizers to include stochasticity for DL networks, are extensively
reviewed. Kernel machines, including Gaussian processes, are provided to
sufficient depth for more advanced works such as shallow networks with infinite
width. Not only addressing experts, readers are assumed familiar with
computational mechanics, but not with DL, whose concepts and applications are
built up from the basics, aiming at bringing first-time learners quickly to the
forefront of research. History and limitations of AI are recounted and
discussed, with particular attention at pointing out misstatements or
misconceptions of the classics, even in well-known references. Positioning and
pointing control of a large-deformable beam is given as an example.
Related papers
- Physics-Informed Graph-Mesh Networks for PDEs: A hybrid approach for complex problems [0.24578723416255746]
We introduce a hybrid approach combining physics-informed graph neural networks with numerical kernels from finite elements.
After studying the theoretical properties of our model, we apply it to complex geometries, in two and three dimensions.
Our choices are supported by an ablation study, and we evaluate the generalisation capacity of the proposed approach.
arXiv Detail & Related papers (2024-09-25T07:52:29Z) - Mechanistic Neural Networks for Scientific Machine Learning [58.99592521721158]
We present Mechanistic Neural Networks, a neural network design for machine learning applications in the sciences.
It incorporates a new Mechanistic Block in standard architectures to explicitly learn governing differential equations as representations.
Central to our approach is a novel Relaxed Linear Programming solver (NeuRLP) inspired by a technique that reduces solving linear ODEs to solving linear programs.
arXiv Detail & Related papers (2024-02-20T15:23:24Z) - A practical existence theorem for reduced order models based on convolutional autoencoders [0.4604003661048266]
Deep learning has gained increasing popularity in the fields of Partial Differential Equations (PDEs) and Reduced Order Modeling (ROM)
CNN-based autoencoders have proven extremely effective, outperforming established techniques, such as the reduced basis method, when dealing with complex nonlinear problems.
We provide a new practical existence theorem for CNN-based autoencoders when the parameter-to-solution map is holomorphic.
arXiv Detail & Related papers (2024-02-01T09:01:58Z) - Slow Invariant Manifolds of Singularly Perturbed Systems via
Physics-Informed Machine Learning [0.0]
We present a physics-informed machine-learning (PIML) approach for the approximation of slow invariant manifold (SIMs) of singularly perturbed systems.
We show that the proposed PIML scheme provides approximations, of equivalent or even higher accuracy, than those provided by other traditional GSPT-based methods.
A comparison of the computational costs between symbolic, automatic and numerical approximation of the required derivatives in the learning process is also provided.
arXiv Detail & Related papers (2023-09-14T14:10:22Z) - A Unified Algebraic Perspective on Lipschitz Neural Networks [88.14073994459586]
This paper introduces a novel perspective unifying various types of 1-Lipschitz neural networks.
We show that many existing techniques can be derived and generalized via finding analytical solutions of a common semidefinite programming (SDP) condition.
Our approach, called SDP-based Lipschitz Layers (SLL), allows us to design non-trivial yet efficient generalization of convex potential layers.
arXiv Detail & Related papers (2023-03-06T14:31:09Z) - Learning to correct spectral methods for simulating turbulent flows [6.110864131646294]
We show that a hybrid of classical numerical techniques and machine learning can offer significant improvements over either approach alone.
Specifically, we develop ML-augmented spectral solvers for three common partial differential equations of fluid dynamics.
arXiv Detail & Related papers (2022-07-01T17:13:28Z) - Characterizing possible failure modes in physics-informed neural
networks [55.83255669840384]
Recent work in scientific machine learning has developed so-called physics-informed neural network (PINN) models.
We demonstrate that, while existing PINN methodologies can learn good models for relatively trivial problems, they can easily fail to learn relevant physical phenomena even for simple PDEs.
We show that these possible failure modes are not due to the lack of expressivity in the NN architecture, but that the PINN's setup makes the loss landscape very hard to optimize.
arXiv Detail & Related papers (2021-09-02T16:06:45Z) - Model-Based Deep Learning [155.063817656602]
Signal processing, communications, and control have traditionally relied on classical statistical modeling techniques.
Deep neural networks (DNNs) use generic architectures which learn to operate from data, and demonstrate excellent performance.
We are interested in hybrid techniques that combine principled mathematical models with data-driven systems to benefit from the advantages of both approaches.
arXiv Detail & Related papers (2020-12-15T16:29:49Z) - Deep Learning for Ultra-Reliable and Low-Latency Communications in 6G
Networks [84.2155885234293]
We first summarize how to apply data-driven supervised deep learning and deep reinforcement learning in URLLC.
To address these open problems, we develop a multi-level architecture that enables device intelligence, edge intelligence, and cloud intelligence for URLLC.
arXiv Detail & Related papers (2020-02-22T14:38:11Z) - Computational model discovery with reinforcement learning [3.005240085945858]
The motivation of this study is to leverage recent breakthroughs in artificial intelligence research to unlock novel solutions to scientific problems encountered in computational science.
To address the human intelligence limitations in discovering reduced-order models, we propose to supplement human thinking with artificial intelligence.
arXiv Detail & Related papers (2019-12-29T22:56:40Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.