Probabilistic combination of eigenlungs-based classifiers for COVID-19
diagnosis in chest CT images
- URL: http://arxiv.org/abs/2103.02961v1
- Date: Thu, 4 Mar 2021 11:30:38 GMT
- Title: Probabilistic combination of eigenlungs-based classifiers for COVID-19
diagnosis in chest CT images
- Authors: Juan E. Arco, Andr\'es Ortiz, Javier Ram\'irez, Francisco J.
Mart\'inez-Murcia, Yu-Dong Zhang, Jordi Broncano, M. \'Alvaro Berb\'is,
Javier Royuela-del-Val, Antonio Luna, Juan M. G\'orriz
- Abstract summary: More than 100 million confirmed cases of COVID-19, including more than 2.4 million deaths.
The use of medical imaging such as chest X-ray (CXR) and chest Computed Tomography (CCT) have proved to be an excellent solution.
We propose an ensemble classifier based on probabilistic Support Vector Machine (SVM) in order to identify pneumonia patterns.
- Score: 6.1020196190084555
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: The outbreak of the COVID-19 (Coronavirus disease 2019) pandemic has changed
the world. According to the World Health Organization (WHO), there have been
more than 100 million confirmed cases of COVID-19, including more than 2.4
million deaths. It is extremely important the early detection of the disease,
and the use of medical imaging such as chest X-ray (CXR) and chest Computed
Tomography (CCT) have proved to be an excellent solution. However, this process
requires clinicians to do it within a manual and time-consuming task, which is
not ideal when trying to speed up the diagnosis. In this work, we propose an
ensemble classifier based on probabilistic Support Vector Machine (SVM) in
order to identify pneumonia patterns while providing information about the
reliability of the classification. Specifically, each CCT scan is divided into
cubic patches and features contained in each one of them are extracted by
applying kernel PCA. The use of base classifiers within an ensemble allows our
system to identify the pneumonia patterns regardless of their size or location.
Decisions of each individual patch are then combined into a global one
according to the reliability of each individual classification: the lower the
uncertainty, the higher the contribution. Performance is evaluated in a real
scenario, yielding an accuracy of 97.86%. The large performance obtained and
the simplicity of the system (use of deep learning in CCT images would result
in a huge computational cost) evidence the applicability of our proposal in a
real-world environment.
Related papers
- Advancing Diagnostic Precision: Leveraging Machine Learning Techniques
for Accurate Detection of Covid-19, Pneumonia, and Tuberculosis in Chest
X-Ray Images [0.0]
Lung diseases such as COVID-19, tuberculosis (TB), and pneumonia continue to be serious global health concerns.
Paramedics and scientists are working intensively to create a reliable and precise approach for early-stage COVID-19 diagnosis.
arXiv Detail & Related papers (2023-10-09T18:38:49Z) - Revisiting Computer-Aided Tuberculosis Diagnosis [56.80999479735375]
Tuberculosis (TB) is a major global health threat, causing millions of deaths annually.
Computer-aided tuberculosis diagnosis (CTD) using deep learning has shown promise, but progress is hindered by limited training data.
We establish a large-scale dataset, namely the Tuberculosis X-ray (TBX11K) dataset, which contains 11,200 chest X-ray (CXR) images with corresponding bounding box annotations for TB areas.
This dataset enables the training of sophisticated detectors for high-quality CTD.
arXiv Detail & Related papers (2023-07-06T08:27:48Z) - Preservation of High Frequency Content for Deep Learning-Based Medical
Image Classification [74.84221280249876]
An efficient analysis of large amounts of chest radiographs can aid physicians and radiologists.
We propose a novel Discrete Wavelet Transform (DWT)-based method for the efficient identification and encoding of visual information.
arXiv Detail & Related papers (2022-05-08T15:29:54Z) - A novel framework based on deep learning and ANOVA feature selection
method for diagnosis of COVID-19 cases from chest X-ray Images [0.0]
COVID-19 was first identified in Wuhan and quickly spread worldwide.
Most accessible method for COVID-19 identification is RT-PCR.
Compared to RT-PCR, chest CT scans and chest X-ray images provide superior results.
DenseNet169 was employed to extract features from X-ray images.
arXiv Detail & Related papers (2021-09-30T16:10:31Z) - Tiled sparse coding in eigenspaces for the COVID-19 diagnosis in chest
X-ray images [0.0]
We propose a classification framework based on sparse coding in order to identify the pneumonia patterns associated with different pathologies.
The accuracy when identifying the presence of pneumonia is 93.85%, whereas 88.11% is obtained in the 4-class classification context.
arXiv Detail & Related papers (2021-06-28T13:50:31Z) - M3Lung-Sys: A Deep Learning System for Multi-Class Lung Pneumonia
Screening from CT Imaging [85.00066186644466]
We propose a Multi-task Multi-slice Deep Learning System (M3Lung-Sys) for multi-class lung pneumonia screening from CT imaging.
In addition to distinguish COVID-19 from Healthy, H1N1, and CAP cases, our M 3 Lung-Sys also be able to locate the areas of relevant lesions.
arXiv Detail & Related papers (2020-10-07T06:22:24Z) - Synergistic Learning of Lung Lobe Segmentation and Hierarchical
Multi-Instance Classification for Automated Severity Assessment of COVID-19
in CT Images [61.862364277007934]
We propose a synergistic learning framework for automated severity assessment of COVID-19 in 3D CT images.
A multi-task deep network (called M$2$UNet) is then developed to assess the severity of COVID-19 patients.
Our M$2$UNet consists of a patch-level encoder, a segmentation sub-network for lung lobe segmentation, and a classification sub-network for severity assessment.
arXiv Detail & Related papers (2020-05-08T03:16:15Z) - Diagnosis of Coronavirus Disease 2019 (COVID-19) with Structured Latent
Multi-View Representation Learning [48.05232274463484]
Recently, the outbreak of Coronavirus Disease 2019 (COVID-19) has spread rapidly across the world.
Due to the large number of affected patients and heavy labor for doctors, computer-aided diagnosis with machine learning algorithm is urgently needed.
In this study, we propose to conduct the diagnosis of COVID-19 with a series of features extracted from CT images.
arXiv Detail & Related papers (2020-05-06T15:19:15Z) - JCS: An Explainable COVID-19 Diagnosis System by Joint Classification
and Segmentation [95.57532063232198]
coronavirus disease 2019 (COVID-19) has caused a pandemic disease in over 200 countries.
To control the infection, identifying and separating the infected people is the most crucial step.
This paper develops a novel Joint Classification and (JCS) system to perform real-time and explainable COVID-19 chest CT diagnosis.
arXiv Detail & Related papers (2020-04-15T12:30:40Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.