Revisiting Computer-Aided Tuberculosis Diagnosis
- URL: http://arxiv.org/abs/2307.02848v2
- Date: Tue, 5 Dec 2023 02:42:28 GMT
- Title: Revisiting Computer-Aided Tuberculosis Diagnosis
- Authors: Yun Liu, Yu-Huan Wu, Shi-Chen Zhang, Li Liu, Min Wu, and Ming-Ming
Cheng
- Abstract summary: Tuberculosis (TB) is a major global health threat, causing millions of deaths annually.
Computer-aided tuberculosis diagnosis (CTD) using deep learning has shown promise, but progress is hindered by limited training data.
We establish a large-scale dataset, namely the Tuberculosis X-ray (TBX11K) dataset, which contains 11,200 chest X-ray (CXR) images with corresponding bounding box annotations for TB areas.
This dataset enables the training of sophisticated detectors for high-quality CTD.
- Score: 56.80999479735375
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Tuberculosis (TB) is a major global health threat, causing millions of deaths
annually. Although early diagnosis and treatment can greatly improve the
chances of survival, it remains a major challenge, especially in developing
countries. Recently, computer-aided tuberculosis diagnosis (CTD) using deep
learning has shown promise, but progress is hindered by limited training data.
To address this, we establish a large-scale dataset, namely the Tuberculosis
X-ray (TBX11K) dataset, which contains 11,200 chest X-ray (CXR) images with
corresponding bounding box annotations for TB areas. This dataset enables the
training of sophisticated detectors for high-quality CTD. Furthermore, we
propose a strong baseline, SymFormer, for simultaneous CXR image classification
and TB infection area detection. SymFormer incorporates Symmetric Search
Attention (SymAttention) to tackle the bilateral symmetry property of CXR
images for learning discriminative features. Since CXR images may not strictly
adhere to the bilateral symmetry property, we also propose Symmetric Positional
Encoding (SPE) to facilitate SymAttention through feature recalibration. To
promote future research on CTD, we build a benchmark by introducing evaluation
metrics, evaluating baseline models reformed from existing detectors, and
running an online challenge. Experiments show that SymFormer achieves
state-of-the-art performance on the TBX11K dataset. The data, code, and models
will be released at https://github.com/yun-liu/Tuberculosis.
Related papers
- Towards a Benchmark for Colorectal Cancer Segmentation in Endorectal Ultrasound Videos: Dataset and Model Development [59.74920439478643]
In this paper, we collect and annotated the first benchmark dataset that covers diverse ERUS scenarios.
Our ERUS-10K dataset comprises 77 videos and 10,000 high-resolution annotated frames.
We introduce a benchmark model for colorectal cancer segmentation, named the Adaptive Sparse-context TRansformer (ASTR)
arXiv Detail & Related papers (2024-08-19T15:04:42Z) - SSASS: Semi-Supervised Approach for Stenosis Segmentation [9.767759441883008]
The complexity of coronary artery structures combined with the inherent noise in X-ray images poses a considerable challenge to this task.
We introduce a semi-supervised approach for cardiovascular stenosis segmentation.
Our approach demonstrated an exceptional performance in the Automatic Region-based Coronary Artery Disease diagnostics.
arXiv Detail & Related papers (2023-11-17T02:01:19Z) - Computer-aided Tuberculosis Diagnosis with Attribute Reasoning
Assistance [58.01014026139231]
We propose a new large-scale tuberculosis (TB) chest X-ray dataset (TBX-Att)
We establish an attribute-assisted weakly-supervised framework to classify and localize TB by leveraging the attribute information.
The proposed model is evaluated on the TBX-Att dataset and will serve as a solid baseline for future research.
arXiv Detail & Related papers (2022-07-01T07:50:35Z) - Calibrated Bagging Deep Learning for Image Semantic Segmentation: A Case
Study on COVID-19 Chest X-ray Image [3.135883872525168]
Imaging tests such as chest X-ray (CXR) and computed tomography (CT) can provide useful information to clinical staff.
Deep learning has been applied to perform COVID-19 infection region segmentation and disease classification.
We propose a novel ensemble deep learning model through integrating bagging deep learning and model calibration.
arXiv Detail & Related papers (2022-05-27T20:06:45Z) - Improving Classification Model Performance on Chest X-Rays through Lung
Segmentation [63.45024974079371]
We propose a deep learning approach to enhance abnormal chest x-ray (CXR) identification performance through segmentations.
Our approach is designed in a cascaded manner and incorporates two modules: a deep neural network with criss-cross attention modules (XLSor) for localizing lung region in CXR images and a CXR classification model with a backbone of a self-supervised momentum contrast (MoCo) model pre-trained on large-scale CXR data sets.
arXiv Detail & Related papers (2022-02-22T15:24:06Z) - Generative Residual Attention Network for Disease Detection [51.60842580044539]
We present a novel approach for disease generation in X-rays using a conditional generative adversarial learning.
We generate a corresponding radiology image in a target domain while preserving the identity of the patient.
We then use the generated X-ray image in the target domain to augment our training to improve the detection performance.
arXiv Detail & Related papers (2021-10-25T14:15:57Z) - Many-to-One Distribution Learning and K-Nearest Neighbor Smoothing for
Thoracic Disease Identification [83.6017225363714]
deep learning has become the most powerful computer-aided diagnosis technology for improving disease identification performance.
For chest X-ray imaging, annotating large-scale data requires professional domain knowledge and is time-consuming.
In this paper, we propose many-to-one distribution learning (MODL) and K-nearest neighbor smoothing (KNNS) methods to improve a single model's disease identification performance.
arXiv Detail & Related papers (2021-02-26T02:29:30Z) - RCoNet: Deformable Mutual Information Maximization and High-order
Uncertainty-aware Learning for Robust COVID-19 Detection [12.790651338952005]
The novel 2019 Coronavirus (COVID-19) infection has spread world widely and is currently a major healthcare challenge around the world.
Due to faster imaging time and considerably lower cost than CT, detecting COVID-19 in chest X-ray (CXR) images is preferred for efficient diagnosis, assessment and treatment.
We propose a novel deep network named em RCoNet$k_s$ for robust COVID-19 detection which employs em Deformable Mutual Information Maximization (DeIM), em Mixed High-order Moment Feature (MHMF) and em Multi-
arXiv Detail & Related papers (2021-02-22T15:13:42Z) - BS-Net: learning COVID-19 pneumonia severity on a large Chest X-Ray
dataset [6.5800499500032705]
We design an end-to-end deep learning architecture for predicting, on Chest X-rays images (CXR), a multi-regional score conveying the degree of lung compromise in COVID-19 patients.
We exploit a clinical dataset of almost 5,000 CXR annotated images collected in the same hospital.
Our solution outperforms single human annotators in rating accuracy and consistency.
arXiv Detail & Related papers (2020-06-08T13:55:58Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.