Learning-based Adaptive Control via Contraction Theory
- URL: http://arxiv.org/abs/2103.02987v1
- Date: Thu, 4 Mar 2021 12:19:52 GMT
- Title: Learning-based Adaptive Control via Contraction Theory
- Authors: Hiroyasu Tsukamoto and Soon-Jo Chung and Jean-Jacques Slotine
- Abstract summary: We present a new deep learning-based adaptive control framework for nonlinear systems with parametric uncertainty, called an adaptive Neural Contraction Metric (aNCM)
The aNCM uses a neural network model of an optimal adaptive contraction metric, the existence of which guarantees stability and exponential boundedness of system trajectories under the uncertainty.
- Score: 7.918886297003018
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We present a new deep learning-based adaptive control framework for nonlinear
systems with multiplicatively-separable parametric uncertainty, called an
adaptive Neural Contraction Metric (aNCM). The aNCM uses a neural network model
of an optimal adaptive contraction metric, the existence of which guarantees
asymptotic stability and exponential boundedness of system trajectories under
the parametric uncertainty. In particular, we exploit the concept of a Neural
Contraction Metric (NCM) to obtain a nominal provably stable robust control
policy for nonlinear systems with bounded disturbances, and combine this policy
with a novel adaptation law to achieve stability guarantees. We also show that
the framework is applicable to adaptive control of dynamical systems modeled
via basis function approximation. Furthermore, the use of neural networks in
the aNCM permits its real-time implementation, resulting in broad applicability
to a variety of systems. Its superiority to the state-of-the-art is illustrated
with a simple cart-pole balancing task.
Related papers
- Lyapunov-stable Neural Control for State and Output Feedback: A Novel Formulation [67.63756749551924]
Learning-based neural network (NN) control policies have shown impressive empirical performance in a wide range of tasks in robotics and control.
Lyapunov stability guarantees over the region-of-attraction (ROA) for NN controllers with nonlinear dynamical systems are challenging to obtain.
We demonstrate a new framework for learning NN controllers together with Lyapunov certificates using fast empirical falsification and strategic regularizations.
arXiv Detail & Related papers (2024-04-11T17:49:15Z) - Parameter-Adaptive Approximate MPC: Tuning Neural-Network Controllers without Retraining [50.00291020618743]
This work introduces a novel, parameter-adaptive AMPC architecture capable of online tuning without recomputing large datasets and retraining.
We showcase the effectiveness of parameter-adaptive AMPC by controlling the swing-ups of two different real cartpole systems with a severely resource-constrained microcontroller (MCU)
Taken together, these contributions represent a marked step toward the practical application of AMPC in real-world systems.
arXiv Detail & Related papers (2024-04-08T20:02:19Z) - Sub-linear Regret in Adaptive Model Predictive Control [56.705978425244496]
We present STT-MPC (Self-Tuning Tube-based Model Predictive Control), an online oracle that combines the certainty-equivalence principle and polytopic tubes.
We analyze the regret of the algorithm, when compared to an algorithm initially aware of the system dynamics.
arXiv Detail & Related papers (2023-10-07T15:07:10Z) - Adaptive Robust Model Predictive Control via Uncertainty Cancellation [25.736296938185074]
We propose a learning-based robust predictive control algorithm that compensates for significant uncertainty in the dynamics.
We optimize over a class of nonlinear feedback policies inspired by certainty equivalent "estimate-and-cancel" control laws.
arXiv Detail & Related papers (2022-12-02T18:54:23Z) - Backward Reachability Analysis of Neural Feedback Loops: Techniques for
Linear and Nonlinear Systems [59.57462129637796]
This paper presents a backward reachability approach for safety verification of closed-loop systems with neural networks (NNs)
The presence of NNs in the feedback loop presents a unique set of problems due to the nonlinearities in their activation functions and because NN models are generally not invertible.
We present frameworks for calculating BP over-approximations for both linear and nonlinear systems with control policies represented by feedforward NNs.
arXiv Detail & Related papers (2022-09-28T13:17:28Z) - A Theoretical Overview of Neural Contraction Metrics for Learning-based
Control with Guaranteed Stability [7.963506386866862]
This paper presents a neural network model of an optimal contraction metric and corresponding differential Lyapunov function.
Its innovation lies in providing formal robustness guarantees for learning-based control frameworks.
arXiv Detail & Related papers (2021-10-02T00:28:49Z) - Adaptive Robust Model Predictive Control with Matched and Unmatched
Uncertainty [28.10549712956161]
We propose a learning-based robust predictive control algorithm that can handle large uncertainty in the dynamics for a class of discrete-time systems.
Motivated by an inability of existing learning-based predictive control algorithms to achieve safety guarantees in the presence of uncertainties of large magnitude, we achieve significant performance improvements.
arXiv Detail & Related papers (2021-04-16T17:47:02Z) - Gaussian Process-based Min-norm Stabilizing Controller for
Control-Affine Systems with Uncertain Input Effects and Dynamics [90.81186513537777]
We propose a novel compound kernel that captures the control-affine nature of the problem.
We show that this resulting optimization problem is convex, and we call it Gaussian Process-based Control Lyapunov Function Second-Order Cone Program (GP-CLF-SOCP)
arXiv Detail & Related papers (2020-11-14T01:27:32Z) - Neural Stochastic Contraction Metrics for Learning-based Control and
Estimation [13.751135823626493]
The NSCM framework allows autonomous agents to approximate optimal stable control and estimation policies in real-time.
It outperforms existing nonlinear control and estimation techniques including the state-dependent Riccati equation, iterative LQR, EKF, and the neural contraction.
arXiv Detail & Related papers (2020-11-06T03:04:42Z) - Neural Contraction Metrics for Robust Estimation and Control: A Convex
Optimization Approach [6.646482960350819]
This paper presents a new deep learning-based framework for robust nonlinear estimation and control using the concept of a Neural Contraction Metric (NCM)
The NCM uses a deep long short-term memory recurrent neural network for a global approximation of an optimal contraction metric.
We demonstrate how to exploit NCMs to design an online optimal estimator and controller for nonlinear systems with bounded disturbances utilizing their duality.
arXiv Detail & Related papers (2020-06-08T05:29:38Z) - Adaptive Control and Regret Minimization in Linear Quadratic Gaussian
(LQG) Setting [91.43582419264763]
We propose LqgOpt, a novel reinforcement learning algorithm based on the principle of optimism in the face of uncertainty.
LqgOpt efficiently explores the system dynamics, estimates the model parameters up to their confidence interval, and deploys the controller of the most optimistic model.
arXiv Detail & Related papers (2020-03-12T19:56:38Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.