論文の概要: A Survey on Spoken Language Understanding: Recent Advances and New
Frontiers
- arxiv url: http://arxiv.org/abs/2103.03095v1
- Date: Thu, 4 Mar 2021 15:22:00 GMT
- ステータス: 処理完了
- システム内更新日: 2021-03-05 15:01:11.867306
- Title: A Survey on Spoken Language Understanding: Recent Advances and New
Frontiers
- Title(参考訳): 音声言語理解に関する調査 : 最近の進歩と新たなフロンティア
- Authors: Libo Qin, Tianbao Xie, Wanxiang Che, Ting Liu
- Abstract要約: 音声言語理解(SLU)は、ユーザクエリのセマンティクスフレームの抽出を目的とする。
深層ニューラルネットワークの破裂と事前訓練された言語モデルの進化により、SLUの研究は大きなブレークスルーを得た。
- 参考スコア(独自算出の注目度): 35.59678070422133
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Spoken Language Understanding (SLU) aims to extract the semantics frame of
user queries, which is a core component in a task-oriented dialog system. With
the burst of deep neural networks and the evolution of pre-trained language
models, the research of SLU has obtained significant breakthroughs. However,
there remains a lack of a comprehensive survey summarizing existing approaches
and recent trends, which motivated the work presented in this article. In this
paper, we survey recent advances and new frontiers in SLU. Specifically, we
give a thorough review of this research field, covering different aspects
including (1) new taxonomy: we provide a new perspective for SLU filed,
including single model vs. joint model, implicit joint modeling vs. explicit
joint modeling in joint model, non pre-trained paradigm vs. pre-trained
paradigm;(2) new frontiers: some emerging areas in complex SLU as well as the
corresponding challenges; (3) abundant open-source resources: to help the
community, we have collected, organized the related papers, baseline projects
and leaderboard on a public website where SLU researchers could directly access
to the recent progress. We hope that this survey can shed a light on future
research in SLU field.
- Abstract(参考訳): SLU(Spoken Language Understanding)は、タスク指向ダイアログシステムの中核コンポーネントであるユーザクエリのセマンティクスフレームを抽出することを目的としている。
深層ニューラルネットワークの破裂と事前訓練された言語モデルの進化により、SLUの研究は大きなブレークスルーを得た。
しかし、既存のアプローチと最近のトレンドを要約した包括的な調査がいまだに欠落しており、この記事で提示された研究の動機となっている。
本稿では、SLUの最近の進歩と新しいフロンティアを調査します。
Specifically, we give a thorough review of this research field, covering different aspects including (1) new taxonomy: we provide a new perspective for SLU filed, including single model vs. joint model, implicit joint modeling vs. explicit joint modeling in joint model, non pre-trained paradigm vs. pre-trained paradigm;(2) new frontiers: some emerging areas in complex SLU as well as the corresponding challenges; (3) abundant open-source resources: to help the community, we have collected, organized the related papers, baseline projects and leaderboard on a public website where SLU researchers could directly access to the recent progress.
この調査が今後のSLU分野の研究に光を当てることを願っている。
関連論文リスト
- Federated Large Language Models: Current Progress and Future Directions [63.68614548512534]
本稿では,LLM(FedLLM)のフェデレーション学習について調査し,最近の進歩と今後の方向性を明らかにする。
ファインチューニングと迅速な学習という2つの重要な側面に注目し、既存の作業と関連する研究課題について議論する。
論文 参考訳(メタデータ) (2024-09-24T04:14:33Z) - Retrieval-Enhanced Machine Learning: Synthesis and Opportunities [60.34182805429511]
検索エンハンスメントは機械学習(ML)の幅広い範囲に拡張できる
この研究は、MLの様々な領域の文献を、現在の文献から欠落している一貫した表記で合成することで、このパラダイムの正式なフレームワークであるRetrieval-Enhanced Machine Learning (REML)を導入する。
本研究の目的は、様々な分野の研究者に対して、検索強化モデルの包括的、正式に構造化された枠組みを付与し、学際的な将来の研究を促進することである。
論文 参考訳(メタデータ) (2024-07-17T20:01:21Z) - Vertical Federated Learning for Effectiveness, Security, Applicability: A Survey [67.48187503803847]
Vertical Federated Learning(VFL)は、プライバシ保護のための分散学習パラダイムである。
近年の研究では、VFLの様々な課題に対処する有望な成果が示されている。
この調査は、最近の展開を体系的に概観する。
論文 参考訳(メタデータ) (2024-05-25T16:05:06Z) - ChatGPT Alternative Solutions: Large Language Models Survey [0.0]
大規模言語モデル(LLM)はこの領域における研究貢献の急増に火をつけた。
近年、学術と産業のダイナミックな相乗効果が見られ、LLM研究の分野を新たな高地へと押し上げた。
この調査は、ジェネレーティブAIの現状をよく理解し、さらなる探索、強化、イノベーションの機会に光を当てている。
論文 参考訳(メタデータ) (2024-03-21T15:16:50Z) - Recent Advances in Hate Speech Moderation: Multimodality and the Role of Large Models [52.24001776263608]
この包括的調査は、HSモデレーションの最近の歩みを掘り下げている。
大型言語モデル(LLM)と大規模マルチモーダルモデル(LMM)の急成長する役割を強調した。
研究における既存のギャップを、特に表現不足言語や文化の文脈で特定する。
論文 参考訳(メタデータ) (2024-01-30T03:51:44Z) - Federated Learning for Generalization, Robustness, Fairness: A Survey
and Benchmark [55.898771405172155]
フェデレートラーニングは、異なる当事者間のプライバシー保護コラボレーションのための有望なパラダイムとして登場した。
我々は,連合学習研究の重要かつ最近の展開を体系的に概観する。
論文 参考訳(メタデータ) (2023-11-12T06:32:30Z) - Knowledge Enhanced Pretrained Language Models: A Compreshensive Survey [8.427521246916463]
事前学習型言語モデル(PLM)は,大規模テキストコーパス上で情報表現を学習することで,新たなパラダイムを確立した。
この新しいパラダイムは、自然言語処理の分野全体に革命をもたらし、さまざまなNLPタスクに対して、新しい最先端のパフォーマンスを設定した。
この問題に対処するため, PLM への知識統合は近年, 非常に活発な研究領域となり, 様々なアプローチが開発されている。
論文 参考訳(メタデータ) (2021-10-16T03:27:56Z) - A Joint and Domain-Adaptive Approach to Spoken Language Understanding [30.164751046395573]
Spoken Language Understanding (SLU)は、インテント検出(ID)とスロットフィリング(SF)の2つのサブタスクで構成されている。
1つはこれらの2つのサブタスクに共同で取り組み、予測精度を改善し、もう1つはサブタスクの1つのドメイン適応能力に焦点を当てる。
本稿では,SLUに対する結合型および領域適応型アプローチを提案する。
論文 参考訳(メタデータ) (2021-07-25T09:38:42Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。