Conservative Optimistic Policy Optimization via Multiple Importance
Sampling
- URL: http://arxiv.org/abs/2103.03307v1
- Date: Thu, 4 Mar 2021 20:23:38 GMT
- Title: Conservative Optimistic Policy Optimization via Multiple Importance
Sampling
- Authors: Achraf Azize and Othman Gaizi
- Abstract summary: Reinforcement Learning has been able to solve hard problems such as playing Atari games or solving the game of Go.
Modern deep RL approaches are still not widely used in real-world applications.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Reinforcement Learning (RL) has been able to solve hard problems such as
playing Atari games or solving the game of Go, with a unified approach. Yet
modern deep RL approaches are still not widely used in real-world applications.
One reason could be the lack of guarantees on the performance of the
intermediate executed policies, compared to an existing (already working)
baseline policy. In this paper, we propose an online model-free algorithm that
solves conservative exploration in the policy optimization problem. We show
that the regret of the proposed approach is bounded by
$\tilde{\mathcal{O}}(\sqrt{T})$ for both discrete and continuous parameter
spaces.
Related papers
- A New Policy Iteration Algorithm For Reinforcement Learning in Zero-Sum
Markov Games [10.805520579293747]
We show that a simple variant of naive policy iteration for games converges exponentially fast.
We also show that lookahead policies can be implemented efficiently in the function approximation setting of linear Markov games.
arXiv Detail & Related papers (2023-03-17T01:20:22Z) - Offline Policy Optimization in RL with Variance Regularizaton [142.87345258222942]
We propose variance regularization for offline RL algorithms, using stationary distribution corrections.
We show that by using Fenchel duality, we can avoid double sampling issues for computing the gradient of the variance regularizer.
The proposed algorithm for offline variance regularization (OVAR) can be used to augment any existing offline policy optimization algorithms.
arXiv Detail & Related papers (2022-12-29T18:25:01Z) - Offline Reinforcement Learning with Closed-Form Policy Improvement
Operators [88.54210578912554]
Behavior constrained policy optimization has been demonstrated to be a successful paradigm for tackling Offline Reinforcement Learning.
In this paper, we propose our closed-form policy improvement operators.
We empirically demonstrate their effectiveness over state-of-the-art algorithms on the standard D4RL benchmark.
arXiv Detail & Related papers (2022-11-29T06:29:26Z) - A Policy Efficient Reduction Approach to Convex Constrained Deep
Reinforcement Learning [2.811714058940267]
We propose a new variant of the conditional gradient (CG) type algorithm, which generalizes the minimum norm point (MNP) method.
Our method reduces the memory costs by an order of magnitude, and achieves better performance, demonstrating both its effectiveness and efficiency.
arXiv Detail & Related papers (2021-08-29T20:51:32Z) - Online Sub-Sampling for Reinforcement Learning with General Function
Approximation [111.01990889581243]
In this paper, we establish an efficient online sub-sampling framework that measures the information gain of data points collected by an RL algorithm.
For a value-based method with complexity-bounded function class, we show that the policy only needs to be updated for $proptooperatornamepolylog(K)$ times.
In contrast to existing approaches that update the policy for at least $Omega(K)$ times, our approach drastically reduces the number of optimization calls in solving for a policy.
arXiv Detail & Related papers (2021-06-14T07:36:25Z) - Policy Optimization as Online Learning with Mediator Feedback [46.845765216238135]
Policy Optimization (PO) is a widely used approach to address continuous control tasks.
In this paper, we introduce the notion of mediator feedback that frames PO as an online learning problem over the policy space.
We propose an algorithm, RANDomized-exploration policy Optimization via Multiple Importance Sampling with Truncation (RIST) for regret minimization.
arXiv Detail & Related papers (2020-12-15T11:34:29Z) - Robust Reinforcement Learning using Least Squares Policy Iteration with
Provable Performance Guarantees [3.8073142980733]
This paper addresses the problem of model-free reinforcement learning for Robust Markov Decision Process (RMDP) with large state spaces.
We first propose the Robust Least Squares Policy Evaluation algorithm, which is a multi-step online model-free learning algorithm for policy evaluation.
We then propose Robust Least Squares Policy Iteration (RLSPI) algorithm for learning the optimal robust policy.
arXiv Detail & Related papers (2020-06-20T16:26:50Z) - Optimistic Policy Optimization with Bandit Feedback [70.75568142146493]
We propose an optimistic trust region policy optimization (TRPO) algorithm for which we establish $tilde O(sqrtS2 A H4 K)$ regret for previous rewards.
To the best of our knowledge, the two results are the first sub-linear regret bounds obtained for policy optimization algorithms with unknown transitions and bandit feedback.
arXiv Detail & Related papers (2020-02-19T15:41:18Z) - Improved Algorithms for Conservative Exploration in Bandits [113.55554483194832]
We study the conservative learning problem in the contextual linear bandit setting and introduce a novel algorithm, the Conservative Constrained LinUCB (CLUCB2)
We derive regret bounds for CLUCB2 that match existing results and empirically show that it outperforms state-of-the-art conservative bandit algorithms in a number of synthetic and real-world problems.
arXiv Detail & Related papers (2020-02-08T19:35:01Z) - Provably Efficient Exploration in Policy Optimization [117.09887790160406]
This paper proposes an Optimistic variant of the Proximal Policy Optimization algorithm (OPPO)
OPPO achieves $tildeO(sqrtd2 H3 T )$ regret.
To the best of our knowledge, OPPO is the first provably efficient policy optimization algorithm that explores.
arXiv Detail & Related papers (2019-12-12T08:40:02Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.