論文の概要: Point Cloud based Hierarchical Deep Odometry Estimation
- arxiv url: http://arxiv.org/abs/2103.03394v1
- Date: Fri, 5 Mar 2021 00:17:58 GMT
- ステータス: 処理完了
- システム内更新日: 2021-03-08 14:36:28.376275
- Title: Point Cloud based Hierarchical Deep Odometry Estimation
- Title(参考訳): 点雲に基づく階層的深度オドメトリー推定
- Authors: Farzan Erlik Nowruzi, Dhanvin Kolhatkar, Prince Kapoor, Robert
Laganiere
- Abstract要約: 点群データを用いた運転シナリオにおけるオドメトリ推定を学習する深層モデルを提案する。
提案モデルでは,フレーム対フレームのオドメトリ推定のために生の点雲を消費する。
- 参考スコア(独自算出の注目度): 3.058685580689605
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Processing point clouds using deep neural networks is still a challenging
task. Most existing models focus on object detection and registration with deep
neural networks using point clouds. In this paper, we propose a deep model that
learns to estimate odometry in driving scenarios using point cloud data. The
proposed model consumes raw point clouds in order to extract frame-to-frame
odometry estimation through a hierarchical model architecture. Also, a local
bundle adjustment variation of this model using LSTM layers is implemented.
These two approaches are comprehensively evaluated and are compared against the
state-of-the-art.
- Abstract(参考訳): 深層ニューラルネットワークを用いたポイントクラウドの処理はまだ難しい作業です。
既存のモデルのほとんどは、ポイントクラウドを用いたディープニューラルネットワークによるオブジェクト検出と登録に焦点を当てている。
本稿では,ポイントクラウドデータを用いた運転シナリオにおけるオドメトリ推定を学習する深層モデルを提案する。
提案モデルでは,階層型モデルによるフレーム間オドメトリ推定を行うために,生の点雲を消費する。
また、LSTM層を用いたこのモデルの局所バンドル調整変異も実装されている。
これら2つのアプローチは総合的に評価され、最先端技術と比較される。
関連論文リスト
- ModelNet-O: A Large-Scale Synthetic Dataset for Occlusion-Aware Point
Cloud Classification [28.05358017259757]
本論文では,123,041サンプルの大規模合成データセットであるModelNet-Oを提案する。
ModelNet-Oは、モノクロカメラからのスキャンによる自己閉塞で現実世界の点雲をエミュレートする。
本稿では,PointMLSと呼ばれるロバストポイントクラウド処理手法を提案する。
論文 参考訳(メタデータ) (2024-01-16T08:54:21Z) - Point Cloud Pre-training with Diffusion Models [62.12279263217138]
我々は、ポイントクラウド拡散事前学習(PointDif)と呼ばれる新しい事前学習手法を提案する。
PointDifは、分類、セグメンテーション、検出など、さまざまな下流タスクのために、さまざまな現実世界のデータセット間で大幅に改善されている。
論文 参考訳(メタデータ) (2023-11-25T08:10:05Z) - DSMNet: Deep High-precision 3D Surface Modeling from Sparse Point Cloud
Frames [12.531880335603145]
既存のポイントクラウドモデリングデータセットは、ポイントクラウドモデリング効果自体よりも、ポーズまたは軌道精度によるモデリング精度を表現する。
スパースポイントクラウドフレームを用いた高精度3次元表面モデリングのための新しい学習ベースジョイントフレームワークDSMNetを提案する。
論文 参考訳(メタデータ) (2023-04-09T09:23:06Z) - StarNet: Style-Aware 3D Point Cloud Generation [82.30389817015877]
StarNetは、マッピングネットワークを使用して高忠実度および3Dポイントクラウドを再構築し、生成することができる。
我々のフレームワークは、クラウドの再構築と生成タスクにおいて、様々なメトリクスで同等の最先端のパフォーマンスを達成します。
論文 参考訳(メタデータ) (2023-03-28T08:21:44Z) - Parametric Surface Constrained Upsampler Network for Point Cloud [33.033469444588086]
バイコビック関数と回転関数で表されるパラメトリック曲面をニューラルネットワークに学習させ,新しいサーフェス正規化器をアップサンプラーネットワークに導入する。
これらの設計は、2つの異なるネットワークに統合され、レイヤのアップサンプリングの利点を生かしている。
両課題の最先端実験結果から,提案手法の有効性が示された。
論文 参考訳(メタデータ) (2023-03-14T21:12:54Z) - Controllable Mesh Generation Through Sparse Latent Point Diffusion
Models [105.83595545314334]
メッシュ生成のための新しいスパース潜在点拡散モデルを設計する。
私たちの重要な洞察は、ポイントクラウドをメッシュの中間表現と見なし、代わりにポイントクラウドの分布をモデル化することです。
提案したスパース潜在点拡散モデルにより,生成品質と制御性において優れた性能が得られる。
論文 参考訳(メタデータ) (2023-03-14T14:25:29Z) - Differentiable Convolution Search for Point Cloud Processing [114.66038862207118]
本稿では,点雲上での新しい差分畳み込み探索パラダイムを提案する。
純粋にデータ駆動型であり、幾何学的形状モデリングに適した畳み込みのグループを自動生成することができる。
また,内部畳み込みと外部アーキテクチャの同時探索のための共同最適化フレームワークを提案する。
論文 参考訳(メタデータ) (2021-08-29T14:42:03Z) - Refinement of Predicted Missing Parts Enhance Point Cloud Completion [62.997667081978825]
点雲完了は、部分的な観測から3次元形状の点集合表現を用いて完全な幾何学を予測するタスクである。
従来のアプローチでは、不完全点集合によって供給されるエンコーダ・デコーダモデルにより、点雲全体を直接推定するニューラルネットワークが提案されていた。
本稿では、欠落した幾何を計算し、既知の入力と予測点クラウドを融合することに焦点を当てたエンドツーエンドニューラルネットワークアーキテクチャを提案する。
論文 参考訳(メタデータ) (2020-10-08T22:01:23Z) - DeepCLR: Correspondence-Less Architecture for Deep End-to-End Point
Cloud Registration [12.471564670462344]
この研究は、ディープニューラルネットワークを用いたポイントクラウド登録の問題に対処する。
重なり合うデータ内容を持つ2つの点雲間のアライメントを予測する手法を提案する。
提案手法は,最先端の精度と比較手法の最低実行時間を実現する。
論文 参考訳(メタデータ) (2020-07-22T08:20:57Z) - Local Grid Rendering Networks for 3D Object Detection in Point Clouds [98.02655863113154]
CNNは強力だが、全点の雲を高密度の3Dグリッドに酸化した後、点データに直接畳み込みを適用するのは計算コストがかかる。
入力点のサブセットの小さな近傍を低解像度の3Dグリッドに独立してレンダリングする,新しい,原理化されたローカルグリッドレンダリング(LGR)演算を提案する。
ScanNetとSUN RGB-Dデータセットを用いた3次元オブジェクト検出のためのLGR-Netを検証する。
論文 参考訳(メタデータ) (2020-07-04T13:57:43Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。