論文の概要: Representation Matters: Assessing the Importance of Subgroup Allocations
in Training Data
- arxiv url: http://arxiv.org/abs/2103.03399v1
- Date: Fri, 5 Mar 2021 00:27:08 GMT
- ステータス: 処理完了
- システム内更新日: 2021-03-08 15:00:58.629799
- Title: Representation Matters: Assessing the Importance of Subgroup Allocations
in Training Data
- Title(参考訳): 表象事項:訓練データにおけるサブグループ配置の重要性の評価
- Authors: Esther Rolf, Theodora Worledge, Benjamin Recht, and Michael I. Jordan
- Abstract要約: 訓練データにおける多様な表現は,サブグループのパフォーマンス向上と集団レベルの目標達成の鍵である。
分析と実験は、データセット構成がパフォーマンスにどのように影響するかを説明し、既存のデータにおけるトレンドとドメイン知識を用いて、意図的かつ客観的なデータセット設計を導くのに役立つ構成結果を提供する。
- 参考スコア(独自算出の注目度): 85.43008636875345
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Collecting more diverse and representative training data is often touted as a
remedy for the disparate performance of machine learning predictors across
subpopulations. However, a precise framework for understanding how dataset
properties like diversity affect learning outcomes is largely lacking. By
casting data collection as part of the learning process, we demonstrate that
diverse representation in training data is key not only to increasing subgroup
performances, but also to achieving population level objectives. Our analysis
and experiments describe how dataset compositions influence performance and
provide constructive results for using trends in existing data, alongside
domain knowledge, to help guide intentional, objective-aware dataset design.
- Abstract(参考訳): より多様で代表的なトレーニングデータの収集は、サブポピュレーションをまたがる機械学習予測器の異なるパフォーマンスの治療薬としてしばしば取り上げられる。
しかし、多様性のようなデータセットの特性が学習結果にどのように影響するかを理解するための正確なフレームワークはほとんど欠けている。
学習プロセスの一部としてデータ収集をキャストすることで,訓練データにおける多様な表現が,サブグループのパフォーマンス向上だけでなく,集団レベルの目標達成にも重要であることを実証する。
分析と実験は、データセット構成がパフォーマンスにどのように影響するかを説明し、既存のデータにおけるトレンドとドメイン知識を用いて、意図的かつ客観的なデータセット設計を導くのに役立つ構成結果を提供する。
関連論文リスト
- Word Matters: What Influences Domain Adaptation in Summarization? [43.7010491942323]
本稿では,ドメイン適応性能に影響を及ぼすきめ細かな要因について検討する。
本稿では,生成的要約の学習難しさとして,データセット学習の難しさの定量化を提案する。
実験により,データセット学習の難易度を考慮すると,要約タスクにおけるドメイン間オーバーラップと性能向上が近似線形関係を示すことがわかった。
論文 参考訳(メタデータ) (2024-06-21T02:15:49Z) - ALP: Action-Aware Embodied Learning for Perception [60.64801970249279]
認知のための行動認識型身体学習(ALP)について紹介する。
ALPは、強化学習ポリシーと逆ダイナミクス予測目標を最適化することにより、行動情報を表現学習に組み込む。
ALPは、複数の下流認識タスクにおいて、既存のベースラインよりも優れていることを示す。
論文 参考訳(メタデータ) (2023-06-16T21:51:04Z) - Evaluating and Incentivizing Diverse Data Contributions in Collaborative
Learning [89.21177894013225]
フェデレートされた学習モデルがうまく機能するためには、多様で代表的なデータセットを持つことが不可欠である。
データの多様性を定量化するために用いられる統計的基準と、使用するフェデレート学習アルゴリズムの選択が、結果の平衡に有意な影響を及ぼすことを示す。
我々はこれを活用して、データ収集者がグローバルな人口を代表するデータに貢献することを奨励する、シンプルな最適なフェデレーション学習機構を設計する。
論文 参考訳(メタデータ) (2023-06-08T23:38:25Z) - On the Trade-off of Intra-/Inter-class Diversity for Supervised
Pre-training [72.8087629914444]
教師付き事前学習データセットのクラス内多様性(クラス毎のサンプル数)とクラス間多様性(クラス数)とのトレードオフの影響について検討した。
トレーニング前のデータセットのサイズが固定された場合、最高のダウンストリームのパフォーマンスは、クラス内/クラス間の多様性のバランスがとれる。
論文 参考訳(メタデータ) (2023-05-20T16:23:50Z) - Striving for data-model efficiency: Identifying data externalities on
group performance [75.17591306911015]
信頼できる、効果的で責任ある機械学習システムの構築は、トレーニングデータとモデリング決定の違いが、予測パフォーマンスにどのように影響するかを理解することに集中する。
我々は、特定のタイプのデータモデル非効率性に注目し、一部のソースからトレーニングデータを追加することで、集団の重要なサブグループで評価されるパフォーマンスを実際に低下させることができる。
以上の結果から,データ効率が正確かつ信頼性の高い機械学習の鍵となることが示唆された。
論文 参考訳(メタデータ) (2022-11-11T16:48:27Z) - Adaptive Sampling Strategies to Construct Equitable Training Datasets [0.7036032466145111]
コンピュータビジョンから自然言語処理までの領域では、機械学習モデルがスタークの相違を示すことが示されている。
これらのパフォーマンスギャップに寄与する要因の1つは、モデルがトレーニングしたデータに表現力の欠如である。
公平なトレーニングデータセットを作成する際の問題を形式化し、この問題に対処するための統計的枠組みを提案する。
論文 参考訳(メタデータ) (2022-01-31T19:19:30Z) - Data-Centric Machine Learning in the Legal Domain [0.2624902795082451]
本稿では,データセットの変化がモデルの性能に与える影響について考察する。
法律ドメインから公開されている3つのデータセットを用いて,そのサイズ,列車/テストの分割,および人間のラベル付け精度がパフォーマンスに与える影響について検討する。
観察された効果は、特にクラスごとのパフォーマンスを考慮した場合、驚くほど顕著である。
論文 参考訳(メタデータ) (2022-01-17T23:05:14Z) - Towards Group Robustness in the presence of Partial Group Labels [61.33713547766866]
入力サンプルとターゲットラベルの間に 急激な相関関係がある ニューラルネットワークの予測を誤った方向に導く
本稿では,制約セットから最悪のグループ割り当てを最適化するアルゴリズムを提案する。
グループ間で総合的な集計精度を維持しつつ,少数集団のパフォーマンス向上を示す。
論文 参考訳(メタデータ) (2022-01-10T22:04:48Z) - Sequential Targeting: an incremental learning approach for data
imbalance in text classification [7.455546102930911]
不均衡なデータセットを扱う方法は、分散スキューを軽減するために不可欠である。
本稿では,提案手法の有効性によらず,新たなトレーニング手法であるシーケンスターゲティング(ST)を提案する。
シミュレーションベンチマークデータセット(IMDB)とNAVERから収集したデータを用いて,本手法の有効性を示す。
論文 参考訳(メタデータ) (2020-11-20T04:54:00Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。