Human-Understandable Decision Making for Visual Recognition
- URL: http://arxiv.org/abs/2103.03429v1
- Date: Fri, 5 Mar 2021 02:07:33 GMT
- Title: Human-Understandable Decision Making for Visual Recognition
- Authors: Xiaowei Zhou, Jie Yin, Ivor Tsang and Chen Wang
- Abstract summary: We propose a new framework to train a deep neural network by incorporating the prior of human perception into the model learning process.
The effectiveness of our proposed model is evaluated on two classical visual recognition tasks.
- Score: 30.30163407674527
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The widespread use of deep neural networks has achieved substantial success
in many tasks. However, there still exists a huge gap between the operating
mechanism of deep learning models and human-understandable decision making, so
that humans cannot fully trust the predictions made by these models. To date,
little work has been done on how to align the behaviors of deep learning models
with human perception in order to train a human-understandable model. To fill
this gap, we propose a new framework to train a deep neural network by
incorporating the prior of human perception into the model learning process.
Our proposed model mimics the process of perceiving conceptual parts from
images and assessing their relative contributions towards the final
recognition. The effectiveness of our proposed model is evaluated on two
classical visual recognition tasks. The experimental results and analysis
confirm our model is able to provide interpretable explanations for its
predictions, but also maintain competitive recognition accuracy.
Related papers
- Restyling Unsupervised Concept Based Interpretable Networks with Generative Models [14.604305230535026]
We propose a novel method that relies on mapping the concept features to the latent space of a pretrained generative model.
We quantitatively ascertain the efficacy of our method in terms of accuracy of the interpretable prediction network, fidelity of reconstruction, as well as faithfulness and consistency of learnt concepts.
arXiv Detail & Related papers (2024-07-01T14:39:41Z) - Automatic Discovery of Visual Circuits [66.99553804855931]
We explore scalable methods for extracting the subgraph of a vision model's computational graph that underlies recognition of a specific visual concept.
We find that our approach extracts circuits that causally affect model output, and that editing these circuits can defend large pretrained models from adversarial attacks.
arXiv Detail & Related papers (2024-04-22T17:00:57Z) - Manipulating Feature Visualizations with Gradient Slingshots [54.31109240020007]
We introduce a novel method for manipulating Feature Visualization (FV) without significantly impacting the model's decision-making process.
We evaluate the effectiveness of our method on several neural network models and demonstrate its capabilities to hide the functionality of arbitrarily chosen neurons.
arXiv Detail & Related papers (2024-01-11T18:57:17Z) - Evaluating alignment between humans and neural network representations in image-based learning tasks [5.657101730705275]
We tested how well the representations of $86$ pretrained neural network models mapped to human learning trajectories.
We found that while training dataset size was a core determinant of alignment with human choices, contrastive training with multi-modal data (text and imagery) was a common feature of currently publicly available models that predicted human generalisation.
In conclusion, pretrained neural networks can serve to extract representations for cognitive models, as they appear to capture some fundamental aspects of cognition that are transferable across tasks.
arXiv Detail & Related papers (2023-06-15T08:18:29Z) - On Modifying a Neural Network's Perception [3.42658286826597]
We propose a method which allows one to modify what an artificial neural network is perceiving regarding specific human-defined concepts.
We test the proposed method on different models, assessing whether the performed manipulations are well interpreted by the models, and analyzing how they react to them.
arXiv Detail & Related papers (2023-03-05T12:09:37Z) - NCTV: Neural Clamping Toolkit and Visualization for Neural Network
Calibration [66.22668336495175]
A lack of consideration for neural network calibration will not gain trust from humans.
We introduce the Neural Clamping Toolkit, the first open-source framework designed to help developers employ state-of-the-art model-agnostic calibrated models.
arXiv Detail & Related papers (2022-11-29T15:03:05Z) - Explain, Edit, and Understand: Rethinking User Study Design for
Evaluating Model Explanations [97.91630330328815]
We conduct a crowdsourcing study, where participants interact with deception detection models that have been trained to distinguish between genuine and fake hotel reviews.
We observe that for a linear bag-of-words model, participants with access to the feature coefficients during training are able to cause a larger reduction in model confidence in the testing phase when compared to the no-explanation control.
arXiv Detail & Related papers (2021-12-17T18:29:56Z) - Multi-Semantic Image Recognition Model and Evaluating Index for
explaining the deep learning models [31.387124252490377]
We first propose a multi-semantic image recognition model, which enables human beings to understand the decision-making process of the neural network.
We then presents a new evaluation index, which can quantitatively assess the model interpretability.
This paper also exhibits the relevant baseline performance with current state-of-the-art deep learning models.
arXiv Detail & Related papers (2021-09-28T07:18:05Z) - Backprop-Free Reinforcement Learning with Active Neural Generative
Coding [84.11376568625353]
We propose a computational framework for learning action-driven generative models without backpropagation of errors (backprop) in dynamic environments.
We develop an intelligent agent that operates even with sparse rewards, drawing inspiration from the cognitive theory of planning as inference.
The robust performance of our agent offers promising evidence that a backprop-free approach for neural inference and learning can drive goal-directed behavior.
arXiv Detail & Related papers (2021-07-10T19:02:27Z) - Deep Reinforcement Learning Models Predict Visual Responses in the
Brain: A Preliminary Result [1.0323063834827415]
We use reinforcement learning to train neural network models to play a 3D computer game.
We find that these reinforcement learning models achieve neural response prediction accuracy scores in the early visual areas.
In contrast, the supervised neural network models yield better neural response predictions in the higher visual areas.
arXiv Detail & Related papers (2021-06-18T13:10:06Z) - Plausible Counterfactuals: Auditing Deep Learning Classifiers with
Realistic Adversarial Examples [84.8370546614042]
Black-box nature of Deep Learning models has posed unanswered questions about what they learn from data.
Generative Adversarial Network (GAN) and multi-objectives are used to furnish a plausible attack to the audited model.
Its utility is showcased within a human face classification task, unveiling the enormous potential of the proposed framework.
arXiv Detail & Related papers (2020-03-25T11:08:56Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.