Restyling Unsupervised Concept Based Interpretable Networks with Generative Models
- URL: http://arxiv.org/abs/2407.01331v1
- Date: Mon, 1 Jul 2024 14:39:41 GMT
- Title: Restyling Unsupervised Concept Based Interpretable Networks with Generative Models
- Authors: Jayneel Parekh, Quentin Bouniot, Pavlo Mozharovskyi, Alasdair Newson, Florence d'Alché-Buc,
- Abstract summary: We propose a novel method that relies on mapping the concept features to the latent space of a pretrained generative model.
We quantitatively ascertain the efficacy of our method in terms of accuracy of the interpretable prediction network, fidelity of reconstruction, as well as faithfulness and consistency of learnt concepts.
- Score: 14.604305230535026
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Developing inherently interpretable models for prediction has gained prominence in recent years. A subclass of these models, wherein the interpretable network relies on learning high-level concepts, are valued because of closeness of concept representations to human communication. However, the visualization and understanding of the learnt unsupervised dictionary of concepts encounters major limitations, specially for large-scale images. We propose here a novel method that relies on mapping the concept features to the latent space of a pretrained generative model. The use of a generative model enables high quality visualization, and naturally lays out an intuitive and interactive procedure for better interpretation of the learnt concepts. Furthermore, leveraging pretrained generative models has the additional advantage of making the training of the system more efficient. We quantitatively ascertain the efficacy of our method in terms of accuracy of the interpretable prediction network, fidelity of reconstruction, as well as faithfulness and consistency of learnt concepts. The experiments are conducted on multiple image recognition benchmarks for large-scale images. Project page available at https://jayneelparekh.github.io/VisCoIN_project_page/
Related papers
- Explainable Concept Generation through Vision-Language Preference Learning [7.736445799116692]
Concept-based explanations have become a popular choice for explaining deep neural networks post-hoc.
We devise a reinforcement learning-based preference optimization algorithm that fine-tunes the vision-language generative model.
In addition to showing the efficacy and reliability of our method, we show how our method can be used as a diagnostic tool for analyzing neural networks.
arXiv Detail & Related papers (2024-08-24T02:26:42Z) - Towards Scalable and Versatile Weight Space Learning [51.78426981947659]
This paper introduces the SANE approach to weight-space learning.
Our method extends the idea of hyper-representations towards sequential processing of subsets of neural network weights.
arXiv Detail & Related papers (2024-06-14T13:12:07Z) - Visual Concept-driven Image Generation with Text-to-Image Diffusion Model [65.96212844602866]
Text-to-image (TTI) models have demonstrated impressive results in generating high-resolution images of complex scenes.
Recent approaches have extended these methods with personalization techniques that allow them to integrate user-illustrated concepts.
However, the ability to generate images with multiple interacting concepts, such as human subjects, as well as concepts that may be entangled in one, or across multiple, image illustrations remains illusive.
We propose a concept-driven TTI personalization framework that addresses these core challenges.
arXiv Detail & Related papers (2024-02-18T07:28:37Z) - Advancing Ante-Hoc Explainable Models through Generative Adversarial Networks [24.45212348373868]
This paper presents a novel concept learning framework for enhancing model interpretability and performance in visual classification tasks.
Our approach appends an unsupervised explanation generator to the primary classifier network and makes use of adversarial training.
This work presents a significant step towards building inherently interpretable deep vision models with task-aligned concept representations.
arXiv Detail & Related papers (2024-01-09T16:16:16Z) - Attributing Learned Concepts in Neural Networks to Training Data [5.930268338525991]
We find evidence for convergence, where removing the 10,000 top attributing images for a concept and retraining the model does not change the location of the concept in the network.
This suggests that the features that inform the development of a concept are spread in a more diffuse manner across its exemplars, implying robustness in concept formation.
arXiv Detail & Related papers (2023-10-04T20:26:59Z) - Hierarchical Semantic Tree Concept Whitening for Interpretable Image
Classification [19.306487616731765]
Post-hoc analysis can only discover the patterns or rules that naturally exist in models.
We proactively instill knowledge to alter the representation of human-understandable concepts in hidden layers.
Our method improves model interpretability, showing better disentanglement of semantic concepts, without negatively affecting model classification performance.
arXiv Detail & Related papers (2023-07-10T04:54:05Z) - GPT4Image: Can Large Pre-trained Models Help Vision Models on Perception
Tasks? [51.22096780511165]
We present a new learning paradigm in which the knowledge extracted from large pre-trained models are utilized to help models like CNN and ViT learn enhanced representations.
We feed detailed descriptions into a pre-trained encoder to extract text embeddings with rich semantic information that encodes the content of images.
arXiv Detail & Related papers (2023-06-01T14:02:45Z) - Ablating Concepts in Text-to-Image Diffusion Models [57.9371041022838]
Large-scale text-to-image diffusion models can generate high-fidelity images with powerful compositional ability.
These models are typically trained on an enormous amount of Internet data, often containing copyrighted material, licensed images, and personal photos.
We propose an efficient method of ablating concepts in the pretrained model, preventing the generation of a target concept.
arXiv Detail & Related papers (2023-03-23T17:59:42Z) - DenseCLIP: Language-Guided Dense Prediction with Context-Aware Prompting [91.56988987393483]
We present a new framework for dense prediction by implicitly and explicitly leveraging the pre-trained knowledge from CLIP.
Specifically, we convert the original image-text matching problem in CLIP to a pixel-text matching problem and use the pixel-text score maps to guide the learning of dense prediction models.
Our method is model-agnostic, which can be applied to arbitrary dense prediction systems and various pre-trained visual backbones.
arXiv Detail & Related papers (2021-12-02T18:59:32Z) - Human-Understandable Decision Making for Visual Recognition [30.30163407674527]
We propose a new framework to train a deep neural network by incorporating the prior of human perception into the model learning process.
The effectiveness of our proposed model is evaluated on two classical visual recognition tasks.
arXiv Detail & Related papers (2021-03-05T02:07:33Z) - Concept Learners for Few-Shot Learning [76.08585517480807]
We propose COMET, a meta-learning method that improves generalization ability by learning to learn along human-interpretable concept dimensions.
We evaluate our model on few-shot tasks from diverse domains, including fine-grained image classification, document categorization and cell type annotation.
arXiv Detail & Related papers (2020-07-14T22:04:17Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.