論文の概要: Unsupervised Learning for Robust Fitting:A Reinforcement Learning
Approach
- arxiv url: http://arxiv.org/abs/2103.03501v1
- Date: Fri, 5 Mar 2021 07:14:00 GMT
- ステータス: 処理完了
- システム内更新日: 2021-03-08 15:05:24.925228
- Title: Unsupervised Learning for Robust Fitting:A Reinforcement Learning
Approach
- Title(参考訳): ロバストフィットのための教師なし学習:強化学習アプローチ
- Authors: Giang Truong, Huu Le, David Suter, Erchuan Zhang, Syed Zulqarnain
Gilani
- Abstract要約: 堅牢なモデルフィッティングを解決するための新しいフレームワークを紹介します。
他の方法とは異なり、私たちの仕事は基本的な入力機能に無知です。
実験により,本手法が既存の学習手法より優れていることを示す。
- 参考スコア(独自算出の注目度): 25.851792661168698
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Robust model fitting is a core algorithm in a large number of computer vision
applications. Solving this problem efficiently for datasets highly contaminated
with outliers is, however, still challenging due to the underlying
computational complexity. Recent literature has focused on learning-based
algorithms. However, most approaches are supervised which require a large
amount of labelled training data. In this paper, we introduce a novel
unsupervised learning framework that learns to directly solve robust model
fitting. Unlike other methods, our work is agnostic to the underlying input
features, and can be easily generalized to a wide variety of LP-type problems
with quasi-convex residuals. We empirically show that our method outperforms
existing unsupervised learning approaches, and achieves competitive results
compared to traditional methods on several important computer vision problems.
- Abstract(参考訳): ロバストモデルフィッティングは、多数のコンピュータビジョンアプリケーションの中核となるアルゴリズムである。
しかし、この問題をoutlierで高度に汚染されたデータセットで効率的に解くことは、基礎となる計算の複雑さのために依然として困難である。
最近の文献は学習に基づくアルゴリズムに焦点を当てている。
しかし、ほとんどのアプローチは大量のラベル付きトレーニングデータを必要とする教師付きである。
本稿では,ロバストなモデル適合性を直接解くことを学ぶための教師なし学習フレームワークを提案する。
他の方法とは異なり、我々の研究は基礎となる入力特徴とは無関係であり、準凸残差を持つ多種多様なLP型問題に容易に一般化できる。
提案手法は既存の教師なし学習手法よりも優れており,コンピュータビジョン問題における従来の手法と比較して,競争力のある結果が得られることを実証的に示す。
関連論文リスト
- Simple Ingredients for Offline Reinforcement Learning [86.1988266277766]
オフライン強化学習アルゴリズムは、ターゲット下流タスクに高度に接続されたデータセットに有効であることが証明された。
既存の手法が多様なデータと競合することを示す。その性能は、関連するデータ収集によって著しく悪化するが、オフラインバッファに異なるタスクを追加するだけでよい。
アルゴリズム的な考慮以上のスケールが、パフォーマンスに影響を及ぼす重要な要因であることを示す。
論文 参考訳(メタデータ) (2024-03-19T18:57:53Z) - A General Framework for Learning from Weak Supervision [93.89870459388185]
本稿では、新しいアルゴリズムを用いて、弱監督(GLWS)から学習するための一般的な枠組みを紹介する。
GLWSの中心は期待最大化(EM)の定式化であり、様々な弱い監督源を順応的に収容している。
また,EM計算要求を大幅に単純化する高度なアルゴリズムを提案する。
論文 参考訳(メタデータ) (2024-02-02T21:48:50Z) - A Novel Differentiable Loss Function for Unsupervised Graph Neural
Networks in Graph Partitioning [5.22145960878624]
グラフ分割問題はNPハードプロブレムとして認識される。
グラフ分割問題を解決するために,教師なしグラフニューラルネットワークを用いた新しいパイプラインを導入する。
我々は、現代の最先端技術に対する我々の方法論を厳格に評価し、メトリクス(カットとバランス)に重点を置いています。
論文 参考訳(メタデータ) (2023-12-11T23:03:17Z) - Neural Algorithmic Reasoning Without Intermediate Supervision [21.852775399735005]
我々は、中間的監督に訴えることなく、入出力ペアからのみニューラルネットワーク推論を学ぶことに集中する。
我々は、アルゴリズムの軌跡にアクセスできることなく、モデルの中間計算を正規化できる自己教師対象を構築する。
CLRSic Algorithmic Reasoning Benchmarkのタスクにおいて,提案手法はトラジェクトリを教師する手法と競合することを示す。
論文 参考訳(メタデータ) (2023-06-23T09:57:44Z) - Towards Robust Dataset Learning [90.2590325441068]
本稿では,頑健なデータセット学習問題を定式化するための三段階最適化法を提案する。
ロバストな特徴と非ロバストな特徴を特徴付ける抽象モデルの下で,提案手法はロバストなデータセットを確実に学習する。
論文 参考訳(メタデータ) (2022-11-19T17:06:10Z) - What Makes Good Contrastive Learning on Small-Scale Wearable-based
Tasks? [59.51457877578138]
本研究では,ウェアラブル型行動認識タスクにおけるコントラスト学習について検討する。
本稿では,PyTorchライブラリのtextttCL-HAR について述べる。
論文 参考訳(メタデータ) (2022-02-12T06:10:15Z) - Simple Stochastic and Online Gradient DescentAlgorithms for Pairwise
Learning [65.54757265434465]
ペアワイズ学習(Pairwise learning)とは、損失関数がペアインスタンスに依存するタスクをいう。
オンライン降下(OGD)は、ペアワイズ学習でストリーミングデータを処理する一般的なアプローチである。
本稿では,ペアワイズ学習のための手法について,シンプルでオンラインな下降を提案する。
論文 参考訳(メタデータ) (2021-11-23T18:10:48Z) - Fast Multi-label Learning [19.104773591885884]
本研究の目的は、複雑なトレーニングプロセスなしで競争性能を達成できる、証明可能な保証付き簡易な方法を提供することである。
論文 参考訳(メタデータ) (2021-08-31T01:07:42Z) - Model-Based Deep Learning [155.063817656602]
信号処理、通信、制御は伝統的に古典的な統計モデリング技術に依存している。
ディープニューラルネットワーク(DNN)は、データから操作を学ぶ汎用アーキテクチャを使用し、優れたパフォーマンスを示す。
私たちは、原理数学モデルとデータ駆動システムを組み合わせて両方のアプローチの利点を享受するハイブリッド技術に興味があります。
論文 参考訳(メタデータ) (2020-12-15T16:29:49Z) - Curriculum Learning with Diversity for Supervised Computer Vision Tasks [1.5229257192293197]
本稿では,学習データの多様性と入力の難しさを考慮に入れた,新たなカリキュラムサンプリング戦略を提案する。
我々は、我々の戦略が不均衡なデータセットに対して非常に効率的であることを証明し、より高速な収束とより正確な結果をもたらす。
論文 参考訳(メタデータ) (2020-09-22T15:32:49Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。