CoDeGAN: Contrastive Disentanglement for Generative Adversarial Network
- URL: http://arxiv.org/abs/2103.03636v2
- Date: Fri, 31 May 2024 08:50:18 GMT
- Title: CoDeGAN: Contrastive Disentanglement for Generative Adversarial Network
- Authors: Jiangwei Zhao, Zejia Liu, Xiaohan Guo, Lili Pan,
- Abstract summary: Disentanglement, a critical concern in interpretable machine learning, has also garnered significant attention from the computer vision community.
We propose textttCoDeGAN, where we relax similarity constraints for disentanglement from the image domain to the feature domain.
We integrate self-supervised pre-training into CoDeGAN to learn semantic representations, significantly facilitating unsupervised disentanglement.
- Score: 0.5437298646956507
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Disentanglement, a critical concern in interpretable machine learning, has also garnered significant attention from the computer vision community. Many existing GAN-based class disentanglement (unsupervised) approaches, such as InfoGAN and its variants, primarily aim to maximize the mutual information (MI) between the generated image and its latent codes. However, this focus may lead to a tendency for the network to generate highly similar images when presented with the same latent class factor, potentially resulting in mode collapse or mode dropping. To alleviate this problem, we propose \texttt{CoDeGAN} (Contrastive Disentanglement for Generative Adversarial Networks), where we relax similarity constraints for disentanglement from the image domain to the feature domain. This modification not only enhances the stability of GAN training but also improves their disentangling capabilities. Moreover, we integrate self-supervised pre-training into CoDeGAN to learn semantic representations, significantly facilitating unsupervised disentanglement. Extensive experimental results demonstrate the superiority of our method over state-of-the-art approaches across multiple benchmarks. The code is available at https://github.com/learninginvision/CoDeGAN.
Related papers
- U-KAN Makes Strong Backbone for Medical Image Segmentation and Generation [48.40120035775506]
Kolmogorov-Arnold Networks (KANs) reshape the neural network learning via the stack of non-linear learnable activation functions.
We investigate, modify and re-design the established U-Net pipeline by integrating the dedicated KAN layers on the tokenized intermediate representation, termed U-KAN.
We further delved into the potential of U-KAN as an alternative U-Net noise predictor in diffusion models, demonstrating its applicability in generating task-oriented model architectures.
arXiv Detail & Related papers (2024-06-05T04:13:03Z) - GIFD: A Generative Gradient Inversion Method with Feature Domain
Optimization [52.55628139825667]
Federated Learning (FL) has emerged as a promising distributed machine learning framework to preserve clients' privacy.
Recent studies find that an attacker can invert the shared gradients and recover sensitive data against an FL system by leveraging pre-trained generative adversarial networks (GAN) as prior knowledge.
We propose textbfGradient textbfInversion over textbfFeature textbfDomains (GIFD), which disassembles the GAN model and searches the feature domains of the intermediate layers.
arXiv Detail & Related papers (2023-08-09T04:34:21Z) - Traditional Classification Neural Networks are Good Generators: They are
Competitive with DDPMs and GANs [104.72108627191041]
We show that conventional neural network classifiers can generate high-quality images comparable to state-of-the-art generative models.
We propose a mask-based reconstruction module to make semantic gradients-aware to synthesize plausible images.
We show that our method is also applicable to text-to-image generation by regarding image-text foundation models.
arXiv Detail & Related papers (2022-11-27T11:25:35Z) - GIU-GANs: Global Information Utilization for Generative Adversarial
Networks [3.3945834638760948]
In this paper, we propose a new GANs called Involution Generative Adversarial Networks (GIU-GANs)
GIU-GANs leverages a brand new module called the Global Information Utilization (GIU) module, which integrates Squeeze-and-Excitation Networks (SENet) and involution.
Batch Normalization(BN) inevitably ignores the representation differences among noise sampled by the generator, and thus degrades the generated image quality.
arXiv Detail & Related papers (2022-01-25T17:17:15Z) - Unsupervised Image Generation with Infinite Generative Adversarial
Networks [24.41144953504398]
We propose a new unsupervised non-parametric method named mixture of infinite conditional GANs or MIC-GANs.
We show that MIC-GANs are effective in structuring the latent space and avoiding mode collapse, and outperform state-of-the-art methods.
arXiv Detail & Related papers (2021-08-18T05:03:19Z) - Contextual Fusion For Adversarial Robustness [0.0]
Deep neural networks are usually designed to process one particular information stream and susceptible to various types of adversarial perturbations.
We developed a fusion model using a combination of background and foreground features extracted in parallel from Places-CNN and Imagenet-CNN.
For gradient based attacks, our results show that fusion allows for significant improvements in classification without decreasing performance on unperturbed data.
arXiv Detail & Related papers (2020-11-18T20:13:23Z) - Unsupervised Controllable Generation with Self-Training [90.04287577605723]
controllable generation with GANs remains a challenging research problem.
We propose an unsupervised framework to learn a distribution of latent codes that control the generator through self-training.
Our framework exhibits better disentanglement compared to other variants such as the variational autoencoder.
arXiv Detail & Related papers (2020-07-17T21:50:35Z) - Self-supervised Equivariant Attention Mechanism for Weakly Supervised
Semantic Segmentation [93.83369981759996]
We propose a self-supervised equivariant attention mechanism (SEAM) to discover additional supervision and narrow the gap.
Our method is based on the observation that equivariance is an implicit constraint in fully supervised semantic segmentation.
We propose consistency regularization on predicted CAMs from various transformed images to provide self-supervision for network learning.
arXiv Detail & Related papers (2020-04-09T14:57:57Z) - Image Fine-grained Inpainting [89.17316318927621]
We present a one-stage model that utilizes dense combinations of dilated convolutions to obtain larger and more effective receptive fields.
To better train this efficient generator, except for frequently-used VGG feature matching loss, we design a novel self-guided regression loss.
We also employ a discriminator with local and global branches to ensure local-global contents consistency.
arXiv Detail & Related papers (2020-02-07T03:45:25Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.