Unsupervised Controllable Generation with Self-Training
- URL: http://arxiv.org/abs/2007.09250v2
- Date: Sun, 2 May 2021 06:59:29 GMT
- Title: Unsupervised Controllable Generation with Self-Training
- Authors: Grigorios G Chrysos, Jean Kossaifi, Zhiding Yu, Anima Anandkumar
- Abstract summary: controllable generation with GANs remains a challenging research problem.
We propose an unsupervised framework to learn a distribution of latent codes that control the generator through self-training.
Our framework exhibits better disentanglement compared to other variants such as the variational autoencoder.
- Score: 90.04287577605723
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Recent generative adversarial networks (GANs) are able to generate impressive
photo-realistic images. However, controllable generation with GANs remains a
challenging research problem. Achieving controllable generation requires
semantically interpretable and disentangled factors of variation. It is
challenging to achieve this goal using simple fixed distributions such as
Gaussian distribution. Instead, we propose an unsupervised framework to learn a
distribution of latent codes that control the generator through self-training.
Self-training provides an iterative feedback in the GAN training, from the
discriminator to the generator, and progressively improves the proposal of the
latent codes as training proceeds. The latent codes are sampled from a latent
variable model that is learned in the feature space of the discriminator. We
consider a normalized independent component analysis model and learn its
parameters through tensor factorization of the higher-order moments. Our
framework exhibits better disentanglement compared to other variants such as
the variational autoencoder, and is able to discover semantically meaningful
latent codes without any supervision. We demonstrate empirically on both cars
and faces datasets that each group of elements in the learned code controls a
mode of variation with a semantic meaning, e.g. pose or background change. We
also demonstrate with quantitative metrics that our method generates better
results compared to other approaches.
Related papers
- Time-series Generation by Contrastive Imitation [87.51882102248395]
We study a generative framework that seeks to combine the strengths of both: Motivated by a moment-matching objective to mitigate compounding error, we optimize a local (but forward-looking) transition policy.
At inference, the learned policy serves as the generator for iterative sampling, and the learned energy serves as a trajectory-level measure for evaluating sample quality.
arXiv Detail & Related papers (2023-11-02T16:45:25Z) - How to train your VAE [0.0]
Variational Autoencoders (VAEs) have become a cornerstone in generative modeling and representation learning within machine learning.
This paper explores interpreting the Kullback-Leibler (KL) Divergence, a critical component within the Evidence Lower Bound (ELBO)
The proposed method redefines the ELBO with a mixture of Gaussians for the posterior probability, introduces a regularization term, and employs a PatchGAN discriminator to enhance texture realism.
arXiv Detail & Related papers (2023-09-22T19:52:28Z) - Disentanglement via Latent Quantization [60.37109712033694]
In this work, we construct an inductive bias towards encoding to and decoding from an organized latent space.
We demonstrate the broad applicability of this approach by adding it to both basic data-re (vanilla autoencoder) and latent-reconstructing (InfoGAN) generative models.
arXiv Detail & Related papers (2023-05-28T06:30:29Z) - Learning Sparse Latent Representations for Generator Model [7.467412443287767]
We present a new unsupervised learning method to enforce sparsity on the latent space for the generator model.
Our model consists of only one top-down generator network that maps the latent variable to the observed data.
arXiv Detail & Related papers (2022-09-20T18:58:24Z) - Self-Conditioned Generative Adversarial Networks for Image Editing [61.50205580051405]
Generative Adversarial Networks (GANs) are susceptible to bias, learned from either the unbalanced data, or through mode collapse.
We argue that this bias is responsible not only for fairness concerns, but that it plays a key role in the collapse of latent-traversal editing methods when deviating away from the distribution's core.
arXiv Detail & Related papers (2022-02-08T18:08:24Z) - Is Disentanglement enough? On Latent Representations for Controllable
Music Generation [78.8942067357231]
In the absence of a strong generative decoder, disentanglement does not necessarily imply controllability.
The structure of the latent space with respect to the VAE-decoder plays an important role in boosting the ability of a generative model to manipulate different attributes.
arXiv Detail & Related papers (2021-08-01T18:37:43Z) - Self-supervised GANs with Label Augmentation [43.78253518292111]
We propose a novel self-supervised GANs framework with label augmentation, i.e., augmenting the GAN labels (real or fake) with the self-supervised pseudo-labels.
We demonstrate that the proposed method significantly outperforms competitive baselines on both generative modeling and representation learning.
arXiv Detail & Related papers (2021-06-16T07:58:00Z) - Do Generative Models Know Disentanglement? Contrastive Learning is All
You Need [59.033559925639075]
We propose an unsupervised and model-agnostic method: Disentanglement via Contrast (DisCo) in the Variation Space.
DisCo achieves the state-of-the-art disentanglement given pretrained non-disentangled generative models, including GAN, VAE, and Flow.
arXiv Detail & Related papers (2021-02-21T08:01:20Z) - Joint Generative and Contrastive Learning for Unsupervised Person
Re-identification [15.486689594217273]
Recent self-supervised contrastive learning provides an effective approach for unsupervised person re-identification (ReID)
In this paper, we incorporate a Generative Adversarial Network (GAN) and a contrastive learning module into one joint training framework.
arXiv Detail & Related papers (2020-12-16T16:49:57Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.