Topology-Aware Correlations Between Relations for Inductive Link
Prediction in Knowledge Graphs
- URL: http://arxiv.org/abs/2103.03642v1
- Date: Fri, 5 Mar 2021 13:00:10 GMT
- Title: Topology-Aware Correlations Between Relations for Inductive Link
Prediction in Knowledge Graphs
- Authors: Jiajun Chen, Huarui He, Feng Wu, Jie Wang
- Abstract summary: TACT is inspired by the observation that the semantic correlation between two relations is highly correlated to their topological knowledge graphs.
We categorize all relation pairs into several topological patterns then propose a structure in Correlation Network (RCN) to learn the importance of the different patterns for inductive link prediction.
Experiments demonstrate that TACT can effectively model semantic correlations between relations, and significantly outperforms existing state-of-the-art methods on benchmark datasets.
- Score: 41.38172189254483
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Inductive link prediction -- where entities during training and inference
stages can be different -- has been shown to be promising for completing
continuously evolving knowledge graphs. Existing models of inductive reasoning
mainly focus on predicting missing links by learning logical rules. However,
many existing approaches do not take into account semantic correlations between
relations, which are commonly seen in real-world knowledge graphs. To address
this challenge, we propose a novel inductive reasoning approach, namely TACT,
which can effectively exploit Topology-Aware CorrelaTions between relations in
an entity-independent manner. TACT is inspired by the observation that the
semantic correlation between two relations is highly correlated to their
topological structure in knowledge graphs. Specifically, we categorize all
relation pairs into several topological patterns, and then propose a Relational
Correlation Network (RCN) to learn the importance of the different patterns for
inductive link prediction. Experiments demonstrate that TACT can effectively
model semantic correlations between relations, and significantly outperforms
existing state-of-the-art methods on benchmark datasets for the inductive link
prediction task.
Related papers
- Learning Complete Topology-Aware Correlations Between Relations for Inductive Link Prediction [121.65152276851619]
We show that semantic correlations between relations are inherently edge-level and entity-independent.
We propose a novel subgraph-based method, namely TACO, to model Topology-Aware COrrelations between relations.
To further exploit the potential of RCN, we propose Complete Common Neighbor induced subgraph.
arXiv Detail & Related papers (2023-09-20T08:11:58Z) - Towards Few-shot Inductive Link Prediction on Knowledge Graphs: A
Relational Anonymous Walk-guided Neural Process Approach [49.00753238429618]
Few-shot inductive link prediction on knowledge graphs aims to predict missing links for unseen entities with few-shot links observed.
Recent inductive methods utilize the sub-graphs around unseen entities to obtain the semantics and predict links inductively.
We propose a novel relational anonymous walk-guided neural process for few-shot inductive link prediction on knowledge graphs, denoted as RawNP.
arXiv Detail & Related papers (2023-06-26T12:02:32Z) - Message Intercommunication for Inductive Relation Reasoning [49.731293143079455]
We develop a novel inductive relation reasoning model called MINES.
We introduce a Message Intercommunication mechanism on the Neighbor-Enhanced Subgraph.
Our experiments show that MINES outperforms existing state-of-the-art models.
arXiv Detail & Related papers (2023-05-23T13:51:46Z) - Knowledge Graph Completion with Counterfactual Augmentation [23.20561746976504]
We introduce a counterfactual question: "would the relation still exist if the neighborhood of entities became different from observation?"
With a carefully designed instantiation of a causal model on the knowledge graph, we generate the counterfactual relations to answer the question.
We incorporate the created counterfactual relations with the GNN-based framework on KGs to augment their learning of entity pair representations.
arXiv Detail & Related papers (2023-02-25T14:08:15Z) - Document-level Relation Extraction with Relation Correlations [15.997345900917058]
Document-level relation extraction faces two overlooked challenges: long-tail problem and multi-label problem.
We analyze the co-occurrence correlation of relations, and introduce it into DocRE task for the first time.
arXiv Detail & Related papers (2022-12-20T11:17:52Z) - Relation-dependent Contrastive Learning with Cluster Sampling for
Inductive Relation Prediction [30.404149577013595]
We introduce Relation-dependent Contrastive Learning (ReCoLe) for inductive relation prediction.
GNN-based encoder is optimized by contrastive learning, which ensures satisfactory performance on long-tail relations.
Experimental results suggest that ReCoLe outperforms state-of-the-art methods on commonly used inductive datasets.
arXiv Detail & Related papers (2022-11-22T13:30:49Z) - Generalized Relation Learning with Semantic Correlation Awareness for
Link Prediction [29.23338194883254]
We propose a unified Generalized Relation Learning framework to address the above two problems.
After training with GRL, the closeness of semantically similar relations in vector space and the discrimination of dissimilar relations are improved.
arXiv Detail & Related papers (2020-12-22T12:22:03Z) - Learning to Decouple Relations: Few-Shot Relation Classification with
Entity-Guided Attention and Confusion-Aware Training [49.9995628166064]
We propose CTEG, a model equipped with two mechanisms to learn to decouple easily-confused relations.
On the one hand, an EGA mechanism is introduced to guide the attention to filter out information causing confusion.
On the other hand, a Confusion-Aware Training (CAT) method is proposed to explicitly learn to distinguish relations.
arXiv Detail & Related papers (2020-10-21T11:07:53Z) - Learning to Extrapolate Knowledge: Transductive Few-shot Out-of-Graph
Link Prediction [69.1473775184952]
We introduce a realistic problem of few-shot out-of-graph link prediction.
We tackle this problem with a novel transductive meta-learning framework.
We validate our model on multiple benchmark datasets for knowledge graph completion and drug-drug interaction prediction.
arXiv Detail & Related papers (2020-06-11T17:42:46Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.