Learning Complete Topology-Aware Correlations Between Relations for Inductive Link Prediction
- URL: http://arxiv.org/abs/2309.11528v3
- Date: Tue, 20 Aug 2024 18:24:32 GMT
- Title: Learning Complete Topology-Aware Correlations Between Relations for Inductive Link Prediction
- Authors: Jie Wang, Hanzhu Chen, Qitan Lv, Zhihao Shi, Jiajun Chen, Huarui He, Hongtao Xie, Defu Lian, Enhong Chen, Feng Wu,
- Abstract summary: We show that semantic correlations between relations are inherently edge-level and entity-independent.
We propose a novel subgraph-based method, namely TACO, to model Topology-Aware COrrelations between relations.
To further exploit the potential of RCN, we propose Complete Common Neighbor induced subgraph.
- Score: 121.65152276851619
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Inductive link prediction -- where entities during training and inference stages can be different -- has shown great potential for completing evolving knowledge graphs in an entity-independent manner. Many popular methods mainly focus on modeling graph-level features, while the edge-level interactions -- especially the semantic correlations between relations -- have been less explored. However, we notice a desirable property of semantic correlations between relations is that they are inherently edge-level and entity-independent. This implies the great potential of the semantic correlations for the entity-independent inductive link prediction task. Inspired by this observation, we propose a novel subgraph-based method, namely TACO, to model Topology-Aware COrrelations between relations that are highly correlated to their topological structures within subgraphs. Specifically, we prove that semantic correlations between any two relations can be categorized into seven topological patterns, and then proposes Relational Correlation Network (RCN) to learn the importance of each pattern. To further exploit the potential of RCN, we propose Complete Common Neighbor induced subgraph that can effectively preserve complete topological patterns within the subgraph. Extensive experiments demonstrate that TACO effectively unifies the graph-level information and edge-level interactions to jointly perform reasoning, leading to a superior performance over existing state-of-the-art methods for the inductive link prediction task.
Related papers
- Document-Level Relation Extraction with Relation Correlation Enhancement [10.684005956288347]
Document-level relation extraction (DocRE) is a task that focuses on identifying relations between entities within a document.
Existing DocRE models often overlook the correlation between relations and lack a quantitative analysis of relation correlations.
We propose a relation graph method, which aims to explicitly exploit the interdependency among relations.
arXiv Detail & Related papers (2023-10-06T10:59:00Z) - Message Intercommunication for Inductive Relation Reasoning [49.731293143079455]
We develop a novel inductive relation reasoning model called MINES.
We introduce a Message Intercommunication mechanism on the Neighbor-Enhanced Subgraph.
Our experiments show that MINES outperforms existing state-of-the-art models.
arXiv Detail & Related papers (2023-05-23T13:51:46Z) - Document-level Relation Extraction with Relation Correlations [15.997345900917058]
Document-level relation extraction faces two overlooked challenges: long-tail problem and multi-label problem.
We analyze the co-occurrence correlation of relations, and introduce it into DocRE task for the first time.
arXiv Detail & Related papers (2022-12-20T11:17:52Z) - Relation-dependent Contrastive Learning with Cluster Sampling for
Inductive Relation Prediction [30.404149577013595]
We introduce Relation-dependent Contrastive Learning (ReCoLe) for inductive relation prediction.
GNN-based encoder is optimized by contrastive learning, which ensures satisfactory performance on long-tail relations.
Experimental results suggest that ReCoLe outperforms state-of-the-art methods on commonly used inductive datasets.
arXiv Detail & Related papers (2022-11-22T13:30:49Z) - On Neural Architecture Inductive Biases for Relational Tasks [76.18938462270503]
We introduce a simple architecture based on similarity-distribution scores which we name Compositional Network generalization (CoRelNet)
We find that simple architectural choices can outperform existing models in out-of-distribution generalizations.
arXiv Detail & Related papers (2022-06-09T16:24:01Z) - Topology-Aware Correlations Between Relations for Inductive Link
Prediction in Knowledge Graphs [41.38172189254483]
TACT is inspired by the observation that the semantic correlation between two relations is highly correlated to their topological knowledge graphs.
We categorize all relation pairs into several topological patterns then propose a structure in Correlation Network (RCN) to learn the importance of the different patterns for inductive link prediction.
Experiments demonstrate that TACT can effectively model semantic correlations between relations, and significantly outperforms existing state-of-the-art methods on benchmark datasets.
arXiv Detail & Related papers (2021-03-05T13:00:10Z) - Learning to Decouple Relations: Few-Shot Relation Classification with
Entity-Guided Attention and Confusion-Aware Training [49.9995628166064]
We propose CTEG, a model equipped with two mechanisms to learn to decouple easily-confused relations.
On the one hand, an EGA mechanism is introduced to guide the attention to filter out information causing confusion.
On the other hand, a Confusion-Aware Training (CAT) method is proposed to explicitly learn to distinguish relations.
arXiv Detail & Related papers (2020-10-21T11:07:53Z) - High-order Semantic Role Labeling [86.29371274587146]
This paper introduces a high-order graph structure for the neural semantic role labeling model.
It enables the model to explicitly consider not only the isolated predicate-argument pairs but also the interaction between the predicate-argument pairs.
Experimental results on 7 languages of the CoNLL-2009 benchmark show that the high-order structural learning techniques are beneficial to the strong performing SRL models.
arXiv Detail & Related papers (2020-10-09T15:33:54Z) - Learning Relation Ties with a Force-Directed Graph in Distant Supervised
Relation Extraction [39.73191604776768]
Relation ties, defined as the correlation and mutual exclusion between different relations, are critical for distant supervised relation extraction.
Existing approaches model this property by greedily learning local dependencies.
We propose a novel force-directed graph based relation extraction model to comprehensively learn relation ties.
arXiv Detail & Related papers (2020-04-21T14:41:38Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.