論文の概要: Automatic Exploration Process Adjustment for Safe Reinforcement Learning
with Joint Chance Constraint Satisfaction
- arxiv url: http://arxiv.org/abs/2103.03656v1
- Date: Fri, 5 Mar 2021 13:30:53 GMT
- ステータス: 処理完了
- システム内更新日: 2021-03-08 15:05:58.131377
- Title: Automatic Exploration Process Adjustment for Safe Reinforcement Learning
with Joint Chance Constraint Satisfaction
- Title(参考訳): ジョイントチャンス制約満足度を用いた安全な強化学習のための自動探索プロセス調整
- Authors: Yoshihiro Okawa, Tomotake Sasaki and Hidenao Iwane
- Abstract要約: 安全強化学習アルゴリズムのための探索過程の自動調整手法を提案する。
提案手法では,探索入力が,その状態とその予測値に応じて毎回使用されるか否かを自動的に選択する。
提案手法は, 予め特定された確率, すなわち, 毎回共同確率制約の満足度と制約の満足度を理論的に保証する。
- 参考スコア(独自算出の注目度): 2.127049691404299
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: In reinforcement learning (RL) algorithms, exploratory control inputs are
used during learning to acquire knowledge for decision making and control,
while the true dynamics of a controlled object is unknown. However, this
exploring property sometimes causes undesired situations by violating
constraints regarding the state of the controlled object. In this paper, we
propose an automatic exploration process adjustment method for safe RL in
continuous state and action spaces utilizing a linear nominal model of the
controlled object. Specifically, our proposed method automatically selects
whether the exploratory input is used or not at each time depending on the
state and its predicted value as well as adjusts the variance-covariance matrix
used in the Gaussian policy for exploration. We also show that our exploration
process adjustment method theoretically guarantees the satisfaction of the
constraints with the pre-specified probability, that is, the satisfaction of a
joint chance constraint at every time. Finally, we illustrate the validity and
the effectiveness of our method through numerical simulation.
- Abstract(参考訳): 強化学習(RL)アルゴリズムでは、学習中に探索的制御入力を使用して意思決定と制御の知識を獲得する一方、制御対象の真のダイナミクスは不明である。
しかし、この探索特性は、制御対象の状態に関する制約に違反して、望ましくない状況を引き起こすことがある。
本稿では,制御対象の線形公称モデルを用いた連続状態および動作空間における安全なRLの自動探索プロセス調整法を提案する。
具体的には,探索のためのガウス政策において用いられる分散共分散行列を調整し,その状態と予測値に応じて探索入力が使用されるか否かを自動的に選択する。
また, 探索プロセスの調整手法は, 予め特定された確率, すなわち, 毎回共同確率制約の満足度と制約の満足度を理論的に保証することを示した。
最後に, 数値シミュレーションによる手法の有効性と有効性について述べる。
関連論文リスト
- Learning Optimal Deterministic Policies with Stochastic Policy Gradients [62.81324245896716]
政策勾配法(PG法)は連続強化学習(RL法)問題に対処する手法として成功している。
一般的には、収束(ハイパー)政治は、決定論的バージョンをデプロイするためにのみ学習される。
本稿では,サンプルの複雑性とデプロイされた決定論的ポリシのパフォーマンスのトレードオフを最適化するために,学習に使用する探索レベルの調整方法を示す。
論文 参考訳(メタデータ) (2024-05-03T16:45:15Z) - Actively Learning Reinforcement Learning: A Stochastic Optimal Control Approach [3.453622106101339]
本研究では,2つの相互に結びついた目的を達成するための枠組みを提案する。 (i) 積極的な探索と意図的な情報収集を伴う強化学習と, (ii) 最適制御法の計算的難易度を克服する枠組みである。
我々は、強化学習を用いて最適制御則を計算することにより、両方の目的にアプローチする。
一定の探索と搾取バランスとは異なり、学習プロセスが終了しても、警告と探索はリアルタイムでコントローラによって自動的に行われる。
論文 参考訳(メタデータ) (2023-09-18T18:05:35Z) - Safe Exploration Method for Reinforcement Learning under Existence of
Disturbance [1.1470070927586016]
我々は、障害の存在下での強化学習における安全な探索問題に対処する。
制御対象と外乱の部分的事前知識を用いた安全な探索手法を提案する。
逆振り子と4バー並列リンクロボットマニピュレータの数値シミュレーションにより,提案手法の有効性と有効性について述べる。
論文 参考訳(メタデータ) (2022-09-30T13:00:33Z) - Reinforcement Learning for Task Specifications with Action-Constraints [4.046919218061427]
有限状態マルコフ決定過程の最適制御ポリシーを学習する手法を提案する。
安全でないと考えられるアクションシーケンスの集合が有限状態オートマトンによって与えられると仮定する。
非マルコフ的行動系列と状態制約の存在下で最適なポリシーを学習するためのQ-learningアルゴリズムのバージョンを提案する。
論文 参考訳(メタデータ) (2022-01-02T04:22:01Z) - Learning Robust Output Control Barrier Functions from Safe Expert Demonstrations [50.37808220291108]
本稿では,専門家によるデモンストレーションの部分的な観察から,安全な出力フィードバック制御法を考察する。
まず,安全性を保証する手段として,ロバスト出力制御バリア関数(ROCBF)を提案する。
次に、安全なシステム動作を示す専門家による実証からROCBFを学習するための最適化問題を定式化する。
論文 参考訳(メタデータ) (2021-11-18T23:21:00Z) - Closing the Closed-Loop Distribution Shift in Safe Imitation Learning [80.05727171757454]
模倣学習問題において,安全な最適化に基づく制御戦略を専門家として扱う。
我々は、実行時に安価に評価でき、専門家と同じ安全保証を確実に満足する学習されたポリシーを訓練する。
論文 参考訳(メタデータ) (2021-02-18T05:11:41Z) - Constrained Model-Free Reinforcement Learning for Process Optimization [0.0]
強化学習(Reinforcement Learning, RL)は、非線形最適制御問題を扱うための制御手法である。
展示された約束にもかかわらず、RLは産業的な実践への顕著な翻訳をまだ見ていない。
確率の高い共同確率制約の満足度を保証できる「オークル」支援型制約付きQ-ラーニングアルゴリズムを提案する。
論文 参考訳(メタデータ) (2020-11-16T13:16:22Z) - Efficient falsification approach for autonomous vehicle validation using
a parameter optimisation technique based on reinforcement learning [6.198523595657983]
自律走行車(AV)の大規模展開は、まだ解決されていない多くの安全上の課題にもかかわらず、差し迫っているように見える。
交通参加者とダイナミックワールドの行動の不確実性は、先進的な自律システムにおいて反応を引き起こす。
本稿では,システム・アンダー・テストを評価するための効率的なファルシフィケーション手法を提案する。
論文 参考訳(メタデータ) (2020-11-16T02:56:13Z) - Chance-Constrained Trajectory Optimization for Safe Exploration and
Learning of Nonlinear Systems [81.7983463275447]
学習に基づく制御アルゴリズムは、訓練のための豊富な監督を伴うデータ収集を必要とする。
本稿では,機会制約付き最適制御と動的学習とフィードバック制御を統合した安全な探索による最適動作計画のための新しいアプローチを提案する。
論文 参考訳(メタデータ) (2020-05-09T05:57:43Z) - Guided Constrained Policy Optimization for Dynamic Quadrupedal Robot
Locomotion [78.46388769788405]
我々は,制約付きポリシー最適化(CPPO)の実装に基づくRLフレームワークであるGCPOを紹介する。
誘導制約付きRLは所望の最適値に近い高速収束を実現し,正確な報酬関数チューニングを必要とせず,最適かつ物理的に実現可能なロボット制御動作を実現することを示す。
論文 参考訳(メタデータ) (2020-02-22T10:15:53Z) - Discrete Action On-Policy Learning with Action-Value Critic [72.20609919995086]
離散的な行動空間における強化学習(RL)は、実世界の応用では至るところで行われているが、その複雑さは行動空間次元とともに指数関数的に増大する。
我々は,行動値関数を推定し,相関行動に適用し,これらの評価値を組み合わせて勾配推定の分散を制御する。
これらの取り組みにより、分散制御技術に頼って、関連するRLアルゴリズムを実証的に上回る、新たな離散的なRLアルゴリズムが実現される。
論文 参考訳(メタデータ) (2020-02-10T04:23:09Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。