論文の概要: Distributed Dynamic Map Fusion via Federated Learning for Intelligent
Networked Vehicles
- arxiv url: http://arxiv.org/abs/2103.03786v1
- Date: Fri, 5 Mar 2021 16:28:46 GMT
- ステータス: 処理完了
- システム内更新日: 2021-03-08 14:57:16.001499
- Title: Distributed Dynamic Map Fusion via Federated Learning for Intelligent
Networked Vehicles
- Title(参考訳): インテリジェントネットワーク車両のためのフェデレーション学習による分散動的マップ融合
- Authors: Zijian Zhang, Shuai Wang, Yuncong Hong, Liangkai Zhou, and Qi Hao
- Abstract要約: 本稿では,高い地図品質を実現するために,連合学習に基づく動的地図融合フレームワークを提案する。
提案されたフレームワークはcarla(carla)シミュレーションプラットフォームに実装されている。
- 参考スコア(独自算出の注目度): 9.748996198083425
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The technology of dynamic map fusion among networked vehicles has been
developed to enlarge sensing ranges and improve sensing accuracies for
individual vehicles. This paper proposes a federated learning (FL) based
dynamic map fusion framework to achieve high map quality despite unknown
numbers of objects in fields of view (FoVs), various sensing and model
uncertainties, and missing data labels for online learning. The novelty of this
work is threefold: (1) developing a three-stage fusion scheme to predict the
number of objects effectively and to fuse multiple local maps with fidelity
scores; (2) developing an FL algorithm which fine-tunes feature models (i.e.,
representation learning networks for feature extraction) distributively by
aggregating model parameters; (3) developing a knowledge distillation method to
generate FL training labels when data labels are unavailable. The proposed
framework is implemented in the Car Learning to Act (CARLA) simulation
platform. Extensive experimental results are provided to verify the superior
performance and robustness of the developed map fusion and FL schemes.
- Abstract(参考訳): ネットワーク化された車両間のダイナミックマップ融合技術は、感知範囲を拡大し、個々の車両の感知精度を向上させるために開発された。
本稿では、視野(FoV)における未知のオブジェクト数、様々なセンシングおよびモデルの不確実性、オンライン学習のためのデータラベルの欠如に拘わらず、高いマップ品質を実現するための、FLベースの動的マップ融合フレームワークを提案する。
本研究の新規性は,(1)オブジェクトの数を効果的に予測し,複数の局所マップを忠実度スコアで融合する3段階融合方式を開発すること,(2)特徴モデル(特徴抽出のための表現学習ネットワーク)をモデルパラメータの集約によって分散的に表現するFLアルゴリズムを開発すること,(3)データラベルが利用できないときにFLトレーニングラベルを生成する知識蒸留法を開発すること,の3つである。
提案されたフレームワークはcarla(carla)シミュレーションプラットフォームに実装されている。
開発したマップフュージョンとFLスキームの優れた性能とロバスト性を検証するため, 広範囲な実験結果が得られた。
関連論文リスト
- Neural Semantic Map-Learning for Autonomous Vehicles [85.8425492858912]
本稿では,道路環境のコヒーレントな地図を作成するために,車両群から収集した局所部分写像を中心インスタンスに融合するマッピングシステムを提案する。
本手法は,シーン特異的なニューラルサイン距離場を用いて,雑音と不完全局所部分写像を併用する。
我々は,記憶効率の高いスパース機能グリッドを活用して大規模にスケールし,シーン再構築における不確実性をモデル化するための信頼スコアを導入する。
論文 参考訳(メタデータ) (2024-10-10T10:10:03Z) - PVAFN: Point-Voxel Attention Fusion Network with Multi-Pooling Enhancing for 3D Object Detection [59.355022416218624]
点とボクセルの表現の統合は、LiDARベースの3Dオブジェクト検出においてより一般的になりつつある。
PVAFN(Point-Voxel Attention Fusion Network)と呼ばれる新しい2段3次元物体検出器を提案する。
PVAFNはマルチプール戦略を使用して、マルチスケールとリージョン固有の情報を効果的に統合する。
論文 参考訳(メタデータ) (2024-08-26T19:43:01Z) - FSD-BEV: Foreground Self-Distillation for Multi-view 3D Object Detection [33.225938984092274]
本稿では,分散の相違を効果的に回避するFSD方式を提案する。
また2つのポイントクラウド拡張(PCI)戦略を設計し、ポイントクラウドの幅を補う。
マルチスケール・フォアグラウンド・エンハンスメント(MSFE)モジュールを開発し,マルチスケール・フォアグラウンドの特徴を抽出・融合する。
論文 参考訳(メタデータ) (2024-07-14T09:39:44Z) - Federated Deep Learning Meets Autonomous Vehicle Perception: Design and
Verification [168.67190934250868]
フェデレーテッド・ラーニング・パワード・コネクテッド・オートモービル(FLCAV)が提案されている。
FLCAVは通信とアノテーションのコストを削減しながらプライバシを保存する。
マルチステージトレーニングのためのネットワークリソースと道路センサのポーズを決定することは困難である。
論文 参考訳(メタデータ) (2022-06-03T23:55:45Z) - Benchmarking the Robustness of LiDAR-Camera Fusion for 3D Object
Detection [58.81316192862618]
自律運転における3D知覚のための2つの重要なセンサーは、カメラとLiDARである。
これら2つのモダリティを融合させることで、3次元知覚モデルの性能を大幅に向上させることができる。
我々は、最先端の核融合法を初めてベンチマークした。
論文 参考訳(メタデータ) (2022-05-30T09:35:37Z) - DouFu: A Double Fusion Joint Learning Method For Driving Trajectory
Representation [13.321587117066166]
軌道表現型共同学習のための新しい多モード融合モデルDouFuを提案する。
まず、軌道データと都市機能ゾーンから生成された動き、経路、グローバルな特徴を設計する。
グローバルなセマンティック機能により、DouFuは各行に対して包括的な埋め込みを生成する。
論文 参考訳(メタデータ) (2022-05-05T07:43:35Z) - Dense Voxel Fusion for 3D Object Detection [10.717415797194896]
ボクセル融合 (Voxel Fusion, DVF) は, 多スケール密度ボクセル特徴表現を生成する逐次融合法である。
地上の真理2Dバウンディングボックスラベルを直接トレーニングし、ノイズの多い検出器固有の2D予測を避けます。
提案したマルチモーダルトレーニング戦略は, 誤った2次元予測を用いたトレーニングに比べ, より一般化できることを示す。
論文 参考訳(メタデータ) (2022-03-02T04:51:31Z) - LATFormer: Locality-Aware Point-View Fusion Transformer for 3D Shape
Recognition [38.540048855119004]
そこで我々は,3次元形状検索と分類のためのLATFormer(Locality-Aware Point-View Fusion Transformer)を提案する。
LATFormerの中核となるコンポーネントはLocality-Aware Fusion (LAF) という名前のモジュールで、2つのモードにまたがる関連領域の局所的特徴を統合する。
LATFormerでは,LAFモジュールを用いて双方向および階層的に2つのモードのマルチスケール機能を融合し,より情報的な特徴を得る。
論文 参考訳(メタデータ) (2021-09-03T03:23:27Z) - Similarity-Aware Fusion Network for 3D Semantic Segmentation [87.51314162700315]
本研究では,3次元セマンティックセグメンテーションのための2次元画像と3次元点雲を適応的に融合する類似性認識融合ネットワーク(SAFNet)を提案する。
我々は、入力とバックプロジェクションされた(2Dピクセルから)点雲の間の幾何学的および文脈的類似性を初めて学習する、後期融合戦略を採用している。
SAFNetは、様々なデータ完全性にまたがって、既存の最先端の核融合ベースのアプローチを著しく上回っている。
論文 参考訳(メタデータ) (2021-07-04T09:28:18Z) - Multi-View Adaptive Fusion Network for 3D Object Detection [14.506796247331584]
LiDAR-カメラ融合に基づく3Dオブジェクト検出は、自動運転の新たな研究テーマになりつつある。
本稿では,LiDARの鳥眼ビュー,LiDARレンジビュー,カメラビューイメージを3Dオブジェクト検出の入力として利用する,単一ステージ多視点融合フレームワークを提案する。
これら2つのコンポーネントを統合するために,MVAF-Netというエンドツーエンドの学習ネットワークを設計する。
論文 参考訳(メタデータ) (2020-11-02T00:06:01Z) - PerMO: Perceiving More at Once from a Single Image for Autonomous
Driving [76.35684439949094]
単一画像から完全テクスチャ化された車両の3次元モデルを検出し,セグメント化し,再構成する新しい手法を提案する。
私たちのアプローチは、ディープラーニングの強みと従来のテクニックの優雅さを組み合わせています。
我々はこれらのアルゴリズムを自律運転システムに統合した。
論文 参考訳(メタデータ) (2020-07-16T05:02:45Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。