OperA: Attention-Regularized Transformers for Surgical Phase Recognition
- URL: http://arxiv.org/abs/2103.03873v1
- Date: Fri, 5 Mar 2021 18:59:14 GMT
- Title: OperA: Attention-Regularized Transformers for Surgical Phase Recognition
- Authors: Tobias Czempiel, Magdalini Paschali, Daniel Ostler, Seong Tae Kim,
Benjamin Busam, Nassir Navab
- Abstract summary: We introduce OperA, a transformer-based model that accurately predicts surgical phases from long video sequences.
OperA is thoroughly evaluated on two datasets of laparoscopic cholecystectomy videos, outperforming various state-of-the-art temporal refinement approaches.
- Score: 46.72897518687539
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In this paper we introduce OperA, a transformer-based model that accurately
predicts surgical phases from long video sequences. A novel attention
regularization loss encourages the model to focus on high-quality frames during
training. Moreover, the attention weights are utilized to identify
characteristic high attention frames for each surgical phase, which could
further be used for surgery summarization. OperA is thoroughly evaluated on two
datasets of laparoscopic cholecystectomy videos, outperforming various
state-of-the-art temporal refinement approaches.
Related papers
- Cataract-1K: Cataract Surgery Dataset for Scene Segmentation, Phase
Recognition, and Irregularity Detection [5.47960852753243]
We present the largest cataract surgery video dataset that addresses diverse requisites for constructing computerized surgical workflow analysis.
We validate the quality of annotations by benchmarking the performance of several state-of-the-art neural network architectures.
The dataset and annotations will be publicly available upon acceptance of the paper.
arXiv Detail & Related papers (2023-12-11T10:53:05Z) - Action Recognition in Video Recordings from Gynecologic Laparoscopy [4.002010889177872]
Action recognition is a prerequisite for many applications in laparoscopic video analysis.
In this study, we design and evaluate a CNN-RNN architecture as well as a customized training-inference framework.
arXiv Detail & Related papers (2023-11-30T16:15:46Z) - Surgical Temporal Action-aware Network with Sequence Regularization for
Phase Recognition [28.52533700429284]
We propose a Surgical Temporal Action-aware Network with sequence Regularization, named STAR-Net, to recognize surgical phases more accurately from input videos.
MS-STA module integrates visual features with spatial and temporal knowledge of surgical actions at the cost of 2D networks.
Our STAR-Net with MS-STA and DSR can exploit visual features of surgical actions with effective regularization, thereby leading to the superior performance of surgical phase recognition.
arXiv Detail & Related papers (2023-11-21T13:43:16Z) - AiAReSeg: Catheter Detection and Segmentation in Interventional
Ultrasound using Transformers [75.20925220246689]
endovascular surgeries are performed using the golden standard of Fluoroscopy, which uses ionising radiation to visualise catheters and vasculature.
This work proposes a solution using an adaptation of a state-of-the-art machine learning transformer architecture to detect and segment catheters in axial interventional Ultrasound image sequences.
arXiv Detail & Related papers (2023-09-25T19:34:12Z) - GLSFormer : Gated - Long, Short Sequence Transformer for Step
Recognition in Surgical Videos [57.93194315839009]
We propose a vision transformer-based approach to learn temporal features directly from sequence-level patches.
We extensively evaluate our approach on two cataract surgery video datasets, Cataract-101 and D99, and demonstrate superior performance compared to various state-of-the-art methods.
arXiv Detail & Related papers (2023-07-20T17:57:04Z) - LoViT: Long Video Transformer for Surgical Phase Recognition [59.06812739441785]
We present a two-stage method, called Long Video Transformer (LoViT) for fusing short- and long-term temporal information.
Our approach outperforms state-of-the-art methods on the Cholec80 and AutoLaparo datasets consistently.
arXiv Detail & Related papers (2023-05-15T20:06:14Z) - Learning-Based Keypoint Registration for Fetoscopic Mosaicking [65.02392513942533]
In Twin-to-Twin Transfusion Syndrome (TTTS), abnormal vascular anastomoses in the monochorionic placenta can produce uneven blood flow between the two fetuses.
We propose a learning-based framework for in-vivo fetoscopy frame registration for field-of-view expansion.
arXiv Detail & Related papers (2022-07-26T21:21:12Z) - Surgical Phase Recognition in Laparoscopic Cholecystectomy [57.929132269036245]
We propose a Transformer-based method that utilizes calibrated confidence scores for a 2-stage inference pipeline.
Our method outperforms the baseline model on the Cholec80 dataset, and can be applied to a variety of action segmentation methods.
arXiv Detail & Related papers (2022-06-14T22:55:31Z) - SUrgical PRediction GAN for Events Anticipation [38.65189355224683]
We used a novel GAN formulation that sampled the future surgical phases trajectory conditioned, on past laparoscopic video frames.
We demonstrated its effectiveness in inferring and predicting the progress of laparoscopic cholecystectomy videos.
We surveyed surgeons to evaluate the plausibility of these predicted trajectories.
arXiv Detail & Related papers (2021-05-10T19:56:45Z) - TeCNO: Surgical Phase Recognition with Multi-Stage Temporal
Convolutional Networks [43.95869213955351]
We propose a Multi-Stage Temporal Convolutional Network (MS-TCN) that performs hierarchical prediction refinement for surgical phase recognition.
Our method is thoroughly evaluated on two datasets of laparoscopic cholecystectomy videos with and without the use of additional surgical tool information.
arXiv Detail & Related papers (2020-03-24T10:12:30Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.