Genetic Algorithm based hyper-parameters optimization for transfer
Convolutional Neural Network
- URL: http://arxiv.org/abs/2103.03875v1
- Date: Fri, 26 Feb 2021 07:38:01 GMT
- Title: Genetic Algorithm based hyper-parameters optimization for transfer
Convolutional Neural Network
- Authors: Chen Li, JinZhe Jiang, YaQian Zhao, RenGang Li, EnDong Wang, Xin
Zhang, Kun Zhao
- Abstract summary: Decision of transfer layers and trainable layers is a major task for design of convolutional neural networks.
In this paper, a genetic algorithm is applied to select trainable layers of the transfer model.
The system will converge with a precision of 97% in the classification of Cats and Dogs datasets.
- Score: 10.144772866486914
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Hyperparameter optimization is a challenging problem in developing deep
neural networks. Decision of transfer layers and trainable layers is a major
task for design of the transfer convolutional neural networks (CNN).
Conventional transfer CNN models are usually manually designed based on
intuition. In this paper, a genetic algorithm is applied to select trainable
layers of the transfer model. The filter criterion is constructed by accuracy
and the counts of the trainable layers. The results show that the method is
competent in this task. The system will converge with a precision of 97% in the
classification of Cats and Dogs datasets, in no more than 15 generations.
Moreover, backward inference according the results of the genetic algorithm
shows that our method can capture the gradient features in network layers,
which plays a part on understanding of the transfer AI models.
Related papers
- Graph Neural Networks for Learning Equivariant Representations of Neural Networks [55.04145324152541]
We propose to represent neural networks as computational graphs of parameters.
Our approach enables a single model to encode neural computational graphs with diverse architectures.
We showcase the effectiveness of our method on a wide range of tasks, including classification and editing of implicit neural representations.
arXiv Detail & Related papers (2024-03-18T18:01:01Z) - Neural Functional Transformers [99.98750156515437]
This paper uses the attention mechanism to define a novel set of permutation equivariant weight-space layers called neural functional Transformers (NFTs)
NFTs respect weight-space permutation symmetries while incorporating the advantages of attention, which have exhibited remarkable success across multiple domains.
We also leverage NFTs to develop Inr2Array, a novel method for computing permutation invariant representations from the weights of implicit neural representations (INRs)
arXiv Detail & Related papers (2023-05-22T23:38:27Z) - SA-CNN: Application to text categorization issues using simulated
annealing-based convolutional neural network optimization [0.0]
Convolutional neural networks (CNNs) are a representative class of deep learning algorithms.
We introduce SA-CNN neural networks for text classification tasks based on Text-CNN neural networks.
arXiv Detail & Related papers (2023-03-13T14:27:34Z) - Globally Optimal Training of Neural Networks with Threshold Activation
Functions [63.03759813952481]
We study weight decay regularized training problems of deep neural networks with threshold activations.
We derive a simplified convex optimization formulation when the dataset can be shattered at a certain layer of the network.
arXiv Detail & Related papers (2023-03-06T18:59:13Z) - Permutation Equivariant Neural Functionals [92.0667671999604]
This work studies the design of neural networks that can process the weights or gradients of other neural networks.
We focus on the permutation symmetries that arise in the weights of deep feedforward networks because hidden layer neurons have no inherent order.
In our experiments, we find that permutation equivariant neural functionals are effective on a diverse set of tasks.
arXiv Detail & Related papers (2023-02-27T18:52:38Z) - Variational Tensor Neural Networks for Deep Learning [0.0]
We propose an integration of tensor networks (TN) into deep neural networks (NNs)
This in turn, results in a scalable tensor neural network (TNN) architecture capable of efficient training over a large parameter space.
We validate the accuracy and efficiency of our method by designing TNN models and providing benchmark results for linear and non-linear regressions, data classification and image recognition on MNIST handwritten digits.
arXiv Detail & Related papers (2022-11-26T20:24:36Z) - EvoPruneDeepTL: An Evolutionary Pruning Model for Transfer Learning
based Deep Neural Networks [15.29595828816055]
We propose an evolutionary pruning model for Transfer Learning based Deep Neural Networks.
EvoPruneDeepTL replaces the last fully-connected layers with sparse layers optimized by a genetic algorithm.
Results show the contribution of EvoPruneDeepTL and feature selection to the overall computational efficiency of the network.
arXiv Detail & Related papers (2022-02-08T13:07:55Z) - Non-Gradient Manifold Neural Network [79.44066256794187]
Deep neural network (DNN) generally takes thousands of iterations to optimize via gradient descent.
We propose a novel manifold neural network based on non-gradient optimization.
arXiv Detail & Related papers (2021-06-15T06:39:13Z) - A Hybrid Method for Training Convolutional Neural Networks [3.172761915061083]
We propose a hybrid method that uses both backpropagation and evolutionary strategies to train Convolutional Neural Networks.
We show that the proposed hybrid method is capable of improving upon regular training in the task of image classification.
arXiv Detail & Related papers (2020-04-15T17:52:48Z) - MSE-Optimal Neural Network Initialization via Layer Fusion [68.72356718879428]
Deep neural networks achieve state-of-the-art performance for a range of classification and inference tasks.
The use of gradient combined nonvolutionity renders learning susceptible to novel problems.
We propose fusing neighboring layers of deeper networks that are trained with random variables.
arXiv Detail & Related papers (2020-01-28T18:25:15Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.