NF-GNN: Network Flow Graph Neural Networks for Malware Detection and
Classification
- URL: http://arxiv.org/abs/2103.03939v1
- Date: Fri, 5 Mar 2021 20:54:38 GMT
- Title: NF-GNN: Network Flow Graph Neural Networks for Malware Detection and
Classification
- Authors: Julian Busch, Anton Kocheturov, Volker Tresp, Thomas Seidl
- Abstract summary: Malicious software (malware) poses an increasing threat to the security of communication systems.
We present three variants of our base model, which all support malware detection and classification in supervised and unsupervised settings.
Experiments on four different prediction tasks consistently demonstrate the advantages of our approach and show that our graph neural network model can boost detection performance by a significant margin.
- Score: 11.624780336645006
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Malicious software (malware) poses an increasing threat to the security of
communication systems, as the number of interconnected mobile devices increases
exponentially. While some existing malware detection and classification
approaches successfully leverage network traffic data, they treat network flows
between pairs of endpoints independently and thus fail to leverage the rich
structural dependencies in the complete network. Our approach first extracts
flow graphs and subsequently classifies them using a novel graph neural network
model. We present three variants of our base model, which all support malware
detection and classification in supervised and unsupervised settings. We
evaluate our approach on flow graphs that we extract from a recently published
dataset for mobile malware detection that addresses several issues with
previously available datasets. Experiments on four different prediction tasks
consistently demonstrate the advantages of our approach and show that our graph
neural network model can boost detection performance by a significant margin.
Related papers
- Applying Self-supervised Learning to Network Intrusion Detection for
Network Flows with Graph Neural Network [8.318363497010969]
This paper studies the application of GNNs to identify the specific types of network flows in an unsupervised manner.
To the best of our knowledge, it is the first GNN-based self-supervised method for the multiclass classification of network flows in NIDS.
arXiv Detail & Related papers (2024-03-03T12:34:13Z) - GNN-LoFI: a Novel Graph Neural Network through Localized Feature-based
Histogram Intersection [51.608147732998994]
Graph neural networks are increasingly becoming the framework of choice for graph-based machine learning.
We propose a new graph neural network architecture that substitutes classical message passing with an analysis of the local distribution of node features.
arXiv Detail & Related papers (2024-01-17T13:04:23Z) - Efficient Network Representation for GNN-based Intrusion Detection [2.321323878201932]
The last decades have seen a growth in the number of cyber-attacks with severe economic and privacy damages.
We propose a novel network representation as a graph of flows that aims to provide relevant topological information for the intrusion detection task.
We present a Graph Neural Network (GNN) based framework responsible for exploiting the proposed graph structure.
arXiv Detail & Related papers (2023-09-11T16:10:12Z) - Anomal-E: A Self-Supervised Network Intrusion Detection System based on
Graph Neural Networks [0.0]
This paper investigates Graph Neural Networks (GNNs) application for self-supervised network intrusion and anomaly detection.
GNNs are a deep learning approach for graph-based data that incorporate graph structures into learning.
We present Anomal-E, a GNN approach to intrusion and anomaly detection that leverages edge features and graph topological structure in a self-supervised process.
arXiv Detail & Related papers (2022-07-14T10:59:39Z) - Self-Supervised and Interpretable Anomaly Detection using Network
Transformers [1.0705399532413615]
This paper introduces the Network Transformer (NeT) model for anomaly detection.
NeT incorporates the graph structure of the communication network in order to improve interpretability.
The presented approach was tested by evaluating the successful detection of anomalies in an Industrial Control System.
arXiv Detail & Related papers (2022-02-25T22:05:59Z) - Unveiling the potential of Graph Neural Networks for robust Intrusion
Detection [2.21481607673149]
We propose a novel Graph Neural Network (GNN) model to learn flow patterns of attacks structured as graphs.
Our model is able to maintain the same level of accuracy as in previous experiments, while state-of-the-art ML techniques degrade up to 50% their accuracy (F1-score) under adversarial attacks.
arXiv Detail & Related papers (2021-07-30T16:56:39Z) - Relational Graph Neural Networks for Fraud Detection in a Super-App
environment [53.561797148529664]
We propose a framework of relational graph convolutional networks methods for fraudulent behaviour prevention in the financial services of a Super-App.
We use an interpretability algorithm for graph neural networks to determine the most important relations to the classification task of the users.
Our results show that there is an added value when considering models that take advantage of the alternative data of the Super-App and the interactions found in their high connectivity.
arXiv Detail & Related papers (2021-07-29T00:02:06Z) - Anomaly Detection on Attributed Networks via Contrastive Self-Supervised
Learning [50.24174211654775]
We present a novel contrastive self-supervised learning framework for anomaly detection on attributed networks.
Our framework fully exploits the local information from network data by sampling a novel type of contrastive instance pair.
A graph neural network-based contrastive learning model is proposed to learn informative embedding from high-dimensional attributes and local structure.
arXiv Detail & Related papers (2021-02-27T03:17:20Z) - Information Obfuscation of Graph Neural Networks [96.8421624921384]
We study the problem of protecting sensitive attributes by information obfuscation when learning with graph structured data.
We propose a framework to locally filter out pre-determined sensitive attributes via adversarial training with the total variation and the Wasserstein distance.
arXiv Detail & Related papers (2020-09-28T17:55:04Z) - Graph Backdoor [53.70971502299977]
We present GTA, the first backdoor attack on graph neural networks (GNNs)
GTA departs in significant ways: it defines triggers as specific subgraphs, including both topological structures and descriptive features.
It can be instantiated for both transductive (e.g., node classification) and inductive (e.g., graph classification) tasks.
arXiv Detail & Related papers (2020-06-21T19:45:30Z) - Heterogeneous Graph Neural Networks for Malicious Account Detection [64.0046412312209]
We present GEM, the first heterogeneous graph neural network approach for detecting malicious accounts.
We learn discriminative embeddings from heterogeneous account-device graphs based on two fundamental weaknesses of attackers, i.e. device aggregation and activity aggregation.
Experiments show that our approaches consistently perform promising results compared with competitive methods over time.
arXiv Detail & Related papers (2020-02-27T18:26:44Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.