Interpolation of CT Projections by Exploiting Their Self-Similarity and
Smoothness
- URL: http://arxiv.org/abs/2103.03968v1
- Date: Fri, 5 Mar 2021 22:41:25 GMT
- Title: Interpolation of CT Projections by Exploiting Their Self-Similarity and
Smoothness
- Authors: Davood Karimi and Rabab K. Ward
- Abstract summary: The proposed algorithm exploits the self-similarity and smoothness of the sinogram.
Experiments with simulated and real CT data show that sinogram with the proposed algorithm leads to a substantial improvement in the quality of the reconstructed image.
- Score: 6.891238879512674
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: As the medical usage of computed tomography (CT) continues to grow, the
radiation dose should remain at a low level to reduce the health risks.
Therefore, there is an increasing need for algorithms that can reconstruct
high-quality images from low-dose scans. In this regard, most of the recent
studies have focused on iterative reconstruction algorithms, and little
attention has been paid to restoration of the projection measurements, i.e.,
the sinogram. In this paper, we propose a novel sinogram interpolation
algorithm. The proposed algorithm exploits the self-similarity and smoothness
of the sinogram. Sinogram self-similarity is modeled in terms of the similarity
of small blocks extracted from stacked projections. The smoothness is modeled
via second-order total variation. Experiments with simulated and real CT data
show that sinogram interpolation with the proposed algorithm leads to a
substantial improvement in the quality of the reconstructed image, especially
on low-dose scans. The proposed method can result in a significant reduction in
the number of projection measurements. This will reduce the radiation dose and
also the amount of data that need to be stored or transmitted, if the
reconstruction is to be performed in a remote site.
Related papers
- CoCPF: Coordinate-based Continuous Projection Field for Ill-Posed Inverse Problem in Imaging [78.734927709231]
Sparse-view computed tomography (SVCT) reconstruction aims to acquire CT images based on sparsely-sampled measurements.
Due to ill-posedness, implicit neural representation (INR) techniques may leave considerable holes'' (i.e., unmodeled spaces) in their fields, leading to sub-optimal results.
We propose the Coordinate-based Continuous Projection Field (CoCPF), which aims to build hole-free representation fields for SVCT reconstruction.
arXiv Detail & Related papers (2024-06-21T08:38:30Z) - Rotational Augmented Noise2Inverse for Low-dose Computed Tomography
Reconstruction [83.73429628413773]
Supervised deep learning methods have shown the ability to remove noise in images but require accurate ground truth.
We propose a novel self-supervised framework for LDCT, in which ground truth is not required for training the convolutional neural network (CNN)
Numerical and experimental results show that the reconstruction accuracy of N2I with sparse views is degrading while the proposed rotational augmented Noise2Inverse (RAN2I) method keeps better image quality over a different range of sampling angles.
arXiv Detail & Related papers (2023-12-19T22:40:51Z) - APRF: Anti-Aliasing Projection Representation Field for Inverse Problem
in Imaging [74.9262846410559]
Sparse-view Computed Tomography (SVCT) reconstruction is an ill-posed inverse problem in imaging.
Recent works use Implicit Neural Representations (INRs) to build the coordinate-based mapping between sinograms and CT images.
We propose a self-supervised SVCT reconstruction method -- Anti-Aliasing Projection Representation Field (APRF)
APRF can build the continuous representation between adjacent projection views via the spatial constraints.
arXiv Detail & Related papers (2023-07-11T14:04:12Z) - Geometric Constraints Enable Self-Supervised Sinogram Inpainting in
Sparse-View Tomography [7.416898042520079]
Sparse-angle tomographic scans reduce radiation and accelerate data acquisition, but suffer from image artifacts and noise.
Existing image processing algorithms can restore CT reconstruction quality but often require large training data sets or can not be used for truncated objects.
This work presents a self-supervised projection inpainting method that allows optimizing missing projective views via gradient-based optimization.
arXiv Detail & Related papers (2023-02-13T15:15:18Z) - One Sample Diffusion Model in Projection Domain for Low-Dose CT Imaging [10.797632196651731]
Low-dose computed tomography (CT) plays a significant role in reducing the radiation risk in clinical applications.
With the rapid development and wide application of deep learning, it has brought new directions for the development of low-dose CT imaging algorithms.
We propose a fully unsupervised one sample diffusion model (OSDM)in projection domain for low-dose CT reconstruction.
The results prove that OSDM is practical and effective model for reducing the artifacts and preserving the image quality.
arXiv Detail & Related papers (2022-12-07T13:39:23Z) - Highly accurate quantum optimization algorithm for CT image
reconstructions based on sinogram patterns [0.0]
We introduce a new quantum algorithm for reconstructing Computed tomography images.
The new algorithm can also be used for cone-beam CT image reconstructions.
arXiv Detail & Related papers (2022-07-06T05:34:57Z) - Low-Dose CT Denoising via Sinogram Inner-Structure Transformer [13.65180174091348]
Low-Dose Computed Tomography (LDCT) technique, which reduces the radiation harm to human bodies, is attracting increasing interest in the medical imaging field.
As the image quality is degraded by low dose radiation, LDCT exams require specialized reconstruction methods or denoising algorithms.
We propose an LDCT denoising network namely Sinogram Inner-Structure Transformer (SIST) to reduce the noise by utilizing the inner-structure in the sinogram domain.
arXiv Detail & Related papers (2022-04-07T02:18:23Z) - Multi-Channel Convolutional Analysis Operator Learning for Dual-Energy
CT Reconstruction [108.06731611196291]
We develop a multi-channel convolutional analysis operator learning (MCAOL) method to exploit common spatial features within attenuation images at different energies.
We propose an optimization method which jointly reconstructs the attenuation images at low and high energies with a mixed norm regularization on the sparse features.
arXiv Detail & Related papers (2022-03-10T14:22:54Z) - Self-Attention Generative Adversarial Network for Iterative
Reconstruction of CT Images [0.9208007322096533]
The aim of this study is to train a single neural network to reconstruct high-quality CT images from noisy or incomplete data.
The network includes a self-attention block to model long-range dependencies in the data.
Our approach is shown to have comparable overall performance to CIRCLE GAN, while outperforming the other two approaches.
arXiv Detail & Related papers (2021-12-23T19:20:38Z) - Improved Slice-wise Tumour Detection in Brain MRIs by Computing
Dissimilarities between Latent Representations [68.8204255655161]
Anomaly detection for Magnetic Resonance Images (MRIs) can be solved with unsupervised methods.
We have proposed a slice-wise semi-supervised method for tumour detection based on the computation of a dissimilarity function in the latent space of a Variational AutoEncoder.
We show that by training the models on higher resolution images and by improving the quality of the reconstructions, we obtain results which are comparable with different baselines.
arXiv Detail & Related papers (2020-07-24T14:02:09Z) - Data Consistent CT Reconstruction from Insufficient Data with Learned
Prior Images [70.13735569016752]
We investigate the robustness of deep learning in CT image reconstruction by showing false negative and false positive lesion cases.
We propose a data consistent reconstruction (DCR) method to improve their image quality, which combines the advantages of compressed sensing and deep learning.
The efficacy of the proposed method is demonstrated in cone-beam CT with truncated data, limited-angle data and sparse-view data, respectively.
arXiv Detail & Related papers (2020-05-20T13:30:49Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.