論文の概要: Noisy Label Learning for Large-scale Medical Image Classification
- arxiv url: http://arxiv.org/abs/2103.04053v1
- Date: Sat, 6 Mar 2021 07:42:36 GMT
- ステータス: 処理完了
- システム内更新日: 2021-03-10 03:05:03.615648
- Title: Noisy Label Learning for Large-scale Medical Image Classification
- Title(参考訳): 大規模医用画像分類のための雑音ラベル学習
- Authors: Fengbei Liu, Yu Tian, Filipe R. Cordeiro, Vasileios Belagiannis, Ian
Reid, Gustavo Carneiro
- Abstract要約: 我々は,最先端のノイズラベルマルチクラストレーニングアプローチを適用し,データセットの胸部x線14のマルチラベル分類器を学習する。
Chest X-ray14 のラベルノイズの大半が 'No Finding' クラスに存在することを示し、これはラベルミスによる 14 疾患の 1 つ以上を含む可能性が高いクラスであるため直感的に正しい。
- 参考スコア(独自算出の注目度): 37.79118840129632
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The classification accuracy of deep learning models depends not only on the
size of their training sets, but also on the quality of their labels. In
medical image classification, large-scale datasets are becoming abundant, but
their labels will be noisy when they are automatically extracted from radiology
reports using natural language processing tools. Given that deep learning
models can easily overfit these noisy-label samples, it is important to study
training approaches that can handle label noise. In this paper, we adapt a
state-of-the-art (SOTA) noisy-label multi-class training approach to learn a
multi-label classifier for the dataset Chest X-ray14, which is a large scale
dataset known to contain label noise in the training set. Given that this
dataset also has label noise in the testing set, we propose a new theoretically
sound method to estimate the performance of the model on a hidden clean testing
data, given the result on the noisy testing data. Using our clean data
performance estimation, we notice that the majority of label noise on Chest
X-ray14 is present in the class 'No Finding', which is intuitively correct
because this is the most likely class to contain one or more of the 14 diseases
due to labelling mistakes.
- Abstract(参考訳): ディープラーニングモデルの分類精度は、トレーニングセットのサイズだけでなく、ラベルの品質にも依存します。
医用画像分類では,大規模データセットが豊富になっているが,自然言語処理ツールを用いて放射線報告書から自動抽出した場合,そのラベルがノイズとなる。
ディープラーニングモデルがこれらのノイズラベルサンプルをオーバーフィットさせることができるため、ラベルノイズを処理するトレーニングアプローチを研究することが重要である。
本論文では,最新のSOTA(noisy-label multi-class training approach)を用いて,トレーニングセットにラベルノイズを含む大規模データセットであるChest X-ray14のマルチラベル分類器を学習する。
このデータセットは、テストセットにもラベルノイズがあることを考えると、ノイズの多いテストデータに基づいて、隠れたクリーンテストデータ上でモデルのパフォーマンスを推定する新しい理論的に健全な方法を提案します。
清潔なデータ性能推定を用いて,胸部x線14のラベルノイズの大部分は'no find'クラスに存在しており,このクラスはラベルミスによる14の疾患のうち1つ以上を含む可能性が最も高いため直感的に正しい。
関連論文リスト
- Training Gradient Boosted Decision Trees on Tabular Data Containing Label Noise for Classification Tasks [1.261491746208123]
本研究の目的は,ラベルノイズが勾配ブースト決定木に及ぼす影響とそれらの効果を緩和する方法を検討することである。
提案手法は,成人のデータセットに対して最先端のノイズ検出性能を示し,成人および乳癌のデータセットに対して最も高い分類精度とリコールを実現する。
論文 参考訳(メタデータ) (2024-09-13T09:09:24Z) - Extracting Clean and Balanced Subset for Noisy Long-tailed Classification [66.47809135771698]
そこで我々は,分布マッチングの観点から,クラスプロトタイプを用いた新しい擬似ラベリング手法を開発した。
手動で特定の確率尺度を設定することで、ノイズと長い尾を持つデータの副作用を同時に減らすことができる。
本手法は, クリーンなラベル付きクラスバランスサブセットを抽出し, ラベルノイズ付きロングテール分類において, 効果的な性能向上を実現する。
論文 参考訳(メタデータ) (2024-04-10T07:34:37Z) - Label-Retrieval-Augmented Diffusion Models for Learning from Noisy
Labels [61.97359362447732]
ノイズの多いラベルからの学習は、実際のアプリケーションのための機械学習において、重要かつ長年にわたる問題である。
本稿では,生成モデルの観点からラベルノイズ問題を再構成する。
我々のモデルは、標準的な実世界のベンチマークデータセットで新しいSOTA(State-of-the-art)結果を達成する。
論文 参考訳(メタデータ) (2023-05-31T03:01:36Z) - Learning to Detect Noisy Labels Using Model-Based Features [16.681748918518075]
Select-Enhanced Noisy label Training (SENT)を提案する。
SENTは、データ駆動の柔軟性を保ちながら、メタ学習に依存しない。
自己学習とラベルの破損の設定の下で、強力なベースラインよりもパフォーマンスを向上させる。
論文 参考訳(メタデータ) (2022-12-28T10:12:13Z) - BoMD: Bag of Multi-label Descriptors for Noisy Chest X-ray
Classification [25.76256302330625]
新しい医用画像分類問題は、放射線医学レポートから抽出された機械生成ノイズラベルに依存する必要があるかもしれない。
マルチクラス問題に対して設計された現在の雑音ラベル学習法は容易には適用できない。
本稿では,データセットからサンプルを検出し,スムーズに再ラベルする,ノイズの多い多ラベルCXR学習のための新しい手法を提案する。
論文 参考訳(メタデータ) (2022-03-03T08:04:59Z) - Learning to Aggregate and Refine Noisy Labels for Visual Sentiment
Analysis [69.48582264712854]
本研究では,頑健な視覚的感情分析を行うための頑健な学習手法を提案する。
本手法は,トレーニング中にノイズラベルを集約・フィルタリングするために外部メモリに依存している。
公開データセットを用いたラベルノイズを用いた視覚的感情分析のベンチマークを構築した。
論文 参考訳(メタデータ) (2021-09-15T18:18:28Z) - Co-Correcting: Noise-tolerant Medical Image Classification via mutual
Label Correction [5.994566233473544]
本稿では,Co-Correctingという耐雑音性医用画像分類フレームワークを提案する。
分類精度を大幅に向上させ、デュアルネットワーク相互学習、ラベル確率推定、カリキュラムラベルの修正を通じてより正確なラベルを得る。
実験により, 様々なタスクにおいて, 雑音比の異なるコココレクショニングが最適な精度と一般化を実現することが示された。
論文 参考訳(メタデータ) (2021-09-11T02:09:52Z) - Noisy Labels Can Induce Good Representations [53.47668632785373]
アーキテクチャがノイズラベルによる学習に与える影響について検討する。
ノイズラベルを用いたトレーニングは,モデルが一般化に乏しい場合でも,有用な隠れ表現を誘導できることを示す。
この発見は、騒々しいラベルで訓練されたモデルを改善する簡単な方法につながります。
論文 参考訳(メタデータ) (2020-12-23T18:58:05Z) - Error-Bounded Correction of Noisy Labels [17.510654621245656]
ノイズのある分類器の予測は、トレーニングデータのラベルがクリーンかどうかを示す良い指標であることを示す。
理論的結果に基づいて,雑音分類器の予測に基づいてラベルを補正する新しいアルゴリズムを提案する。
ラベル補正アルゴリズムをディープニューラルネットワークのトレーニングや,複数の公開データセット上で優れたテスト性能を実現するトレーニングモデルに組み込む。
論文 参考訳(メタデータ) (2020-11-19T19:23:23Z) - Attention-Aware Noisy Label Learning for Image Classification [97.26664962498887]
大規模ラベル付きサンプルで学習した深層畳み込みニューラルネットワーク(CNN)は、コンピュータビジョンにおいて顕著な進歩を遂げている。
大量のラベル付きビジュアルデータを取得する最も安価な方法は、Flickrのようなユーザーが提供するラベルでウェブサイトからクロールすることである。
本稿では,潜在的なラベルノイズのあるデータセットに基づいて学習したネットワークの識別能力を向上させるために,注目に敏感なラベル学習手法を提案する。
論文 参考訳(メタデータ) (2020-09-30T15:45:36Z) - Learning with Out-of-Distribution Data for Audio Classification [60.48251022280506]
我々は,OODインスタンスを破棄するよりも,特定のOODインスタンスを検出・復号化することで,学習に肯定的な影響を及ぼすことを示す。
提案手法は,畳み込みニューラルネットワークの性能を著しく向上させる。
論文 参考訳(メタデータ) (2020-02-11T21:08:06Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。